
Executing Verified Compiler Specification

Koji Okuma1 and Yasuhiko Minamide2

1 Doctoral Program in Engineering
University of Tsukuba

2 Institute of Information Sciences and Electronics
University of Tsukuba

{okuma,minamide}@score.is.tsukuba.ac.jp

Abstract. Much work has been done in verifying a compiler specifica-
tion, both in hand-written and mechanical proofs. However, there is still
a gap between a correct compiler specification and a correct compiler
implementation. To fill this gap and obtain a correct compiler imple-
mentation, we take the approach of generating a compiler from its spec-
ification. We verified the correctness of a compiler specification with the
theorem prover Isabelle/HOL, and generated a Standard ML code cor-
responding to the specification with Isabelle’s code generation facility.
The generated compiler can be executed with some hand-written codes,
and it compiles a small functional programming language into the Java
virtual machine with several program transformations.

1 Introduction

Correctness of a compiler can be achieved by a correct specification and imple-
mentation. A specification of a compiler is formalized with a mapping between
source and target languages. This mapping is required to be proved that it pre-
serves a meaning between the two languages. An implementation of a compiler
need to be proved correct in terms of this compiler specification. Our approach
here, is to prove correctness of compiler specification and derive an implemen-
tation from it.

Our compiler takes a small functional programming language as input and
compiles it to the Java virtual machine. The syntax of the source language
is based on Scheme and it has the basic features of Lisp, such as lists and
higher-order functions. We verified the correctness of its compiler specification
with the theorem prover Isabelle/HOL [13] and generated a Standard ML code
corresponding to the specification with Isabelle’s code generation facility [2].

We specified the compiler with a subset of Isabelle/HOL including datatypes
and primitive recursive functions that directly correspond to the functional lan-
guage Standard ML. Although Isabelle/HOL can translate some other features,
this restriction makes the translation more trustworthy and easier to coordinate
with the hand-written parser and output routine. The other part of the specifi-
cation including the semantics of the languages need not be executed. Therefore,
it can be written with the full expressive power of Isabelle/HOL without this
restriction.



Source Abstract Syntax

Closure Converted Form

Virtual Machine Code

Output Routine

Lexical Analysis and Parsing

Dead Code Elimination

Closure Conversion

Code Generation

Fig. 1. The structure of our compiler

The structure of our compiler is shown in Figure 1. The closure conver-
sion phase translates a program with lexically nested functions into a program
with only top-level functions. The code generation phase translates a closure-
converted program into a Java virtual machine code. Operational semantics of
these three languages are formalized as inductively defined relations. We verified
that all translations in the compiler preserve the meaning of a program. As an
example of an optimization, we also formalized simple dead code elimination
for the source language. The verification of this optimization was relatively easy
compared to the other part of our verification.

To make our compiler executable, we wrote a parser and an output routine
by hand in ML. In the figure, the code generated by Isabelle/HOL is shown in
solid boxes, and the code written by hand is shown in dashed boxes. In addi-
tion to these routines, we supplied a small library routine written in Java to
implement some primitives. However, these library routines are not verified in
this paper. The resulting compiler successfully compiled several Scheme pro-
grams of 200–550 lines. The specification of our compiler can be obtained from
http://www.score.is.tsukuba.ac.jp/~okuma/vc/.

This paper is organized as follows. In Section 2, we explain the notation
used in this paper, and describe the code generation facility provided by Is-
abelle/HOL. In Sections 3 and 4, we describe the formalization of our compiler
along its organization. In Section 5, we describe integration of the generated code
and hand-written programs, and describe some experimental results. Finally, we
review related work and present some conclusions.

2 Isabelle/HOL

In this section, we describe the basic features of Isabelle/HOL. In particular, we
explain Isabelle/HOL’s code generation facility, which is used to generate our
executable compiler.



2.1 Isabelle/HOL

Isabelle is a generic, interactive theorem prover that can be instantiated with
several object logics. Isabelle/HOL is an instantiation of Isabelle to Church’s
higher-order logic [13]. We wrote our proofs in Isabelle’s new syntax Isar[18],
which enabled us to write human-readable and structured proofs. We refer to
Isabelle/HOL as HOL in the remainder of this paper.

HOL is equipped with the usual logical connectives, such as ∨, ∧, →, ∀, ∃.
Types follow the syntax of ML, except the function arrow is ⇒. HOL supports
inductive datatypes similar to those of functional programming languages, and
both primitive and well-founded recursive functions. In HOL, we can define a
set inductively that we will use to formalize operational semantics.

2.2 Executable Specification in HOL

HOL has a facility to generate a code from a specification [2]. It translates
several HOL elements into an executable Standard ML code. Elements that can
be code-generated are: datatypes, recursive functions (both primitive recursive
and well-founded recursive functions), and inductive definitions. The translation
of datatypes and recursive functions is straightforward. However, the translation
of an inductive definition is more complicated. HOL applies a mode analysis and
generates a program that simulates a logic programming language.

Of the executable features of HOL, we only use features that directly cor-
respond to those of ML, such as datatype definitions and primitive recursive
functions. We do this because we think it would be easier to interact and the
translation can be trusted. Note that these restrictions are only applied to the
specification of the compiler. Semantics and other relations that are defined
to prove correctness need not be executed. Specifications of a compiler can be
written easily in functional style, and proofs can be written with HOL’s full
expressive power.

Consider the following specification in HOL. This example specifies the datatype
for natural numbers and the primitive recursive function for the addition of nat-
ural numbers.

datatype
nat = 0 | Suc nat

primrec
"add 0 y = y"

"add (Suc x) y = Suc (add x y)"

This program is translated into the following program in Standard ML by the
code generation facility. Except for some renaming, this translation is straight-
forward and, therefore, we think that this translation can be trusted.

datatype Code_nat = nat_0 | nat_Suc of Code_nat



fun add nat_0 y = y
| add (nat_Suc x) y = nat_Suc (add x y)

However, the translation described above has a problem. Types defined in HOL
are translated into new types in Standard ML, and there is no way to obtain
interoperability with existing datatypes in ML. We used HOL’s method, which
translates types in HOL to those of ML directly, to overcome this problem. In the
following specification, the type nat, and the constants 0 and Suc are translated
into int and corresponding operations in Standard ML. This translation is done
literally; underscore ’_ ’ in the description is substituted by the arguments of
the original terms. There is no check in this translation with respect to either
syntax or semantics of ML. Therefore, care must be taken when specifying this
correspondence.

types code
"nat" ("int")

consts code
"0" ("0")

"Suc" ("(_ + 1)")

This form of translation is essential to obtain interoperability with the parser
and the output routine as well as reasonable performance of the generated code.

3 Source Language and Closure Conversion

The specification of our compiler consists of an abstract syntax and compilation
functions. To verify correctness of the specified compiler, the semantics of each
language must also be specified. We proved that each translation preserves a
meaning with respect to their semantics. We now describe the specification of
the source language and closure conversion.

3.1 Source Language

Our source language is a pure subset of Scheme, which has the following fea-
tures: lexical scoping, higher-order functions and list manipulation. As basic data
types, we include boolean values, integers and symbols. Features currently not
supported include: mutually recursive functions, imperative features and contin-
uation.

We represented our source language as an abstract syntax defined by the
following datatype declaration in HOL:

datatype exp = NumExp int

| BoolExp bool

| SymExp symbol

| NullExp

| VarExp variable



| UniExp uop exp

| BinExp bop exp exp

| IfExp exp exp exp

| LetExp variable exp exp

| FunExp variable "variable list" exp exp

| AppExp exp "exp list"

The type variable is a synonym of nat, which is the built-in datatype to express
natural numbers. To represent base types, such as symbols and integers, we
introduced new types symbol and int. Primitive operators are either unary or
binary, and expressed by datatypes uop and bop. Note that, FunExp in datatype
specifies not only a function definition but also a main expression to be evaluated.
The expression below defines a function that adds two arguments, and evaluates
its application with arguments 1 and 2.

constdefs
addprog :: exp

"addprog == FunExp 0 [1, 2]

(BinExp PlusOp (VarExp 1) (VarExp 2))

(AppExp (VarExp 0) [(NumExp 1), (NumExp 2)])"

The semantics of the source language is specified as big-step natural seman-
tics. We define this as a relation on a value environment, a source expression
and a value. We defined datatypes value and env, to represent values and envi-
ronments as follows:

types ’a env = "(variable * ’a) list"

datatype value = IntVal int

| BoolVal bool

| SymVal symbol

| NullVal

| ConsVal value value

| ClsVal variable "value env" "variable list" exp

An environment is represented as an association list. A value ClsVal f env xs

exp represents the closure of a recursive function where f is the name of the
function, env is the environment mapping each free variable to a value and xs

is the list of formal parameters.
Finally, we define the semantics of this language as an inductively defined

relation eval as:

consts eval :: "(value env * exp * value) set"

inductive eval

intros
var : "[[lookup E n = Some v]] =⇒ (E, VarExp n, v) ∈ eval"

lete : "[[(E, e1, v1) ∈ eval;

((x, v1)#E, e2, v) ∈ eval]]
=⇒ (E, LetExp x e1 e2, v) ∈ eval"

· · ·



The definition above shows the case of a variable and a let-expression. The
definition of the semantics is standard. Please refer to the proof scripts for details.

3.2 Closure Conversion

The first phase of our compiler is closure conversion, which achieves a separation
between code and data. This translates a lexically nested function to a code
abstracted with an extra environment that contains the free variables occurring
in the original function. After this translation, the code becomes closed, and
separated from the data. This enables nested functions to be defined at the top
level and shared by all closures that are instances of these functions. Consider
the following program written in Scheme.

(define (f x y) (let ((g (lambda (z) (+ x y z)))) g))

The function g contains free variables x and y. Closure conversion eliminates di-
rect references to these variables by replacing them with references to an explicit
environment. The above program is translated to the following program.

(define (g env z) (let ((x (car env))
(y (cdr env)))

(+ x y z)))

(define (f x y) (cons g (cons x y)))

In this example, the closure and the environment are implemented with cons
cells.

Conceptually, closure conversion divides into two phases.

1. The first phase makes all functions closed by abstracting them with an en-
vironment.

2. The second phase lifts all functions to the top level.

Most of the previous formal accounts of closure conversion formalize only the first
phase [7, 11], but compilers usually perform these two phases as one transforma-
tion. Because we need to extract an executable compiler from the specification,
we formalized closure conversion as a transformation that performs these two
phases simultaneously.

The target language of closure conversion differs from the source language
in that: it does not include a function definition, but an operation for creat-
ing a closure explicitly. A program in the target language is represented as a
pair of declaration of top level functions and an expression evaluated under the
declaration. The following are datatypes to represent the target language.

types decl = "variable list * variable list * cexp"

decls = "decl env"

datatype cexp = · · ·
| MkCls variable "variable list"



primrec
"clsconv (VarExp x) = (VarExp x, [])"

"clsconv (FunExp f as e1 e2) = let (e1’, ds1) = clsconv e1 in

let (e2’, ds2) = clsconv e2 in

let xs = diff (fv e1) (f#as) in

(LetExp f (MkCls f xs) e2’,

ins (f, xs, as, e1’)

(union ds1 ds2))"

"clsconv (AppExp f es) = let (f’, ds1) = clsconv f in

let (es’, ds2) = clsconv_list es in

(AppExp f’ es’, union ds1 ds2)"

· · ·

Fig. 2. Closure conversion

The type decls represents a declaration of top level functions and is a mapping
from variables to definitions of functions. The definition of a function consists
of the list of free variables, the list of formal parameters and its body. The
expression of the target language, cexp, includes the operation MkCls f xs that
creates a closure of the function f with the environment containing values of xs.

We formalized closure conversion as a primitive recursive function with the
following type.

consts
clsconv :: "exp ⇒ cexp * decls"

As we described above, the conversion function translates an expression in the
source language into a pair of an expression in the target language and a declara-
tion of top level functions. The main part of the translation is shown in Figure 2.
To transform a function definition, e1 and e2 are translated into e1’ and e2’,
respectively. It also produces declarations ds1 and ds2. To construct the closure
of the function, we need to compute the set of free variables that occur in the
function body by diff (fv e1) (f#as). Finally, the declaration corresponding to
the function f is inserted into the union of ds1 and ds2.

In this definition, we represented sets by lists and used the following manip-
ulation functions:

consts
fv :: "exp ⇒ variable list"

diff :: "[’a list, ’a list] ⇒ ’a list"

union :: "[’a list, ’a list] ⇒ ’a list"

where fv exp computes the set of free variables of exp. These functions are easily
defined as primitive recursive functions. HOL has the built-in type constructor
set to represent possibly infinite sets, and automated theorem-proving methods
work very well for operations on set. However, we could not use them for closure
conversion because an executable code cannot be extracted for the operations on
set. Many lemmas on our set operations are required in proving correctness of



the translation. To eliminate unnecessary proof work, we showed that each set
operation we defined is compatible with the corresponding built-in set operation.
For example, the following lemma shows that the union of two lists is equivalent
to the union of two sets. The function set used in this example is a conversion
function from lists to sets.

lemma union_set: "set (union A B) = set A ∪ set B"

With these lemmas, most lemmas on our set operations are proved automatically.

3.3 Verification of Closure Conversion

We proved correctness of closure conversion in HOL. To formalize correctness
of the transformation, we first introduce the following datatype representing
observable values.

datatype ovalue = IntVal int

| BoolVal bool

| SymVal symbol

| NullVal

| ConsVal

| ClsVal

We consider integers, boolean values, symbols and null as observable values,
but the detailed structures of cons cells and closures are ignored. Values of the
source and target languages are coerced into observable values by the following
functions.

consts
value2obs :: "value ⇒ ovalue"

cvalue2obs :: "cvalue ⇒ ovalue"

The following is the correctness theorem verified in HOL. The theorem says that
if M is evaluated to v under the empty environment [], the translated expression
M’ is evaluated to v’ under the empty environment [] and the declaration D

generated by closure conversion. Furthermore, the values v and v’ correspond
to the same observable value.

theorem assumes "([], M, v) ∈ Lang.eval " "fv M = []"

shows "let (M’,D) = clsconv M in func D −→
(∃ v’. (D, [], M’, v’) ∈ CLang.eval ∧

value2obs v = cvalue2obs v’)"

Note an extra condition func D in the theorem. This condition is necessary to
lift function definitions to the top level.

constdefs
func :: "(’a, ’b) list ⇒ bool"

"func D == (∀ f x y. elem (f, x) D −→ elem (f, y) D −→ x = y)"



The function elem is the membership predicate on a list. This condition is sat-
isfied if function names are distinct. In our hand-written parser, each variable is
renamed to a fresh integer value to satisfy this condition.

To prove the theorem above, we needed to prove a generalized statement,
which was proved by induction on the derivation of (E, M, v) ∈ eval. The proof
consists of approximately 750 lines.

4 Code Generation

The code generation phase of our compiler translates a closure-converted pro-
gram into a Java virtual machine code. We chose the Java virtual machine (JVM)
as the target of our compiler for the following reasons. First, it is easier to trans-
late our source language into JVM than a conventional machine language, be-
cause its instructions are stack-based and we can assume memory management
of JVM. Secondly, a formalization of JVM has been studied extensively in several
works for type soundness of JVM and there are several works that have already
formalized it using theorem provers [8, 9].

For the verification of our compiler, we formalized JVM from the beginning
because existing formalizations do not include sufficient instructions to generate
an executable code for our compiler and we can also simplify our verification by
restricting features of the virtual machine.

The first step of our verification is to clarify what should be verified. Our
compiler consists of the code generated from the verified specification and the
small quantity of hand-written code. The hand-written code contains a small
library written in Java to implement some primitives of the source language.
In our verification, we focused on the verification of the core of the compiler
and did not verify correctness of the library. For real programming languages,
implementation of some primitives are complicated and their correctness proofs
will be non-trivial. We think that a verification of the library is a different issue.

The rest of our verification is similar to the verification of closure conversion,
but it was much more difficult than that of closure conversion. The specification
of code generation and its verification is approximately 2400 lines.

4.1 Formalization of a Virtual Machine

We formalized a small subset of the Java virtual machine, so that it is sufficient
to generate the code of the source language. The instruction set is restricted
to a small subset and the form of an object is also restricted. The following
summarizes the restrictions of our virtual machine.

– classes have only one method
– branching instructions do not jump backward
– no interface, no exception, no thread and no inheritance

Our compiler translates a closure into an object with one method and each
function is translated into a class. To simplify the virtual machine, we did not



introduce a class with multiple methods. Branch instructions only jump forward
because our source language does not have a loop construct.

Instructions of our virtual machine are formalized by the following datatype:

datatype
’a instr = ALoad nat

| IAdd

· · ·
| Dup

| New cname

| Invoke nat

| PrimCall ’a

where the type variable ’a is used to parameterize the set of instructions with
primitives provided by the library. We briefly describe the instructions defined
above. ALoad instruction loads an object reference from local variables. New f

makes a new instance of class f. Invoke instruction invokes a method of the class
corresponding to closures. It only takes a number of arguments, since an object
can be determined from the operand stack and each object has only one method.
PrimCall instruction is a pseudo instruction introduced to call primitives.

The following is a part of the primitives implemented in the library.

datatype
prim = PrimMkCons

| PrimCar

| PrimCdr

· · ·
We split the specification of semantics of these primitives from the specification
of the virtual machine. The semantics of each of these primitives is specified
as a relation describing their effects on a state of the virtual machine. The
specification below, defines the semantics of the primitives.

consts
prim_spec :: "(prim heap * vmVal list * prim * prim heap * vmVal)

set"

inductive prim_spec

intros
mkcons : "l /∈ dom H =⇒

(H, [v2,v1], PrimMkCons,

H(l 7→ PrimObj PrimMkCons [v1, v2]), VmAddr l) ∈ prim_spec"

car : "H(l) = Some (PrimObj PrimMkCons [v,v’])

=⇒ (H, [VmAddr l], PrimCar, H, v) ∈ prim_spec"

· · ·
For example, the primitive PrimMkCons creates a fresh cons cell PrimObj PrimMkCons

[v1, v2] on the heap for the arguments v1 and v2. The heap of the virtual
machine is also abstracted with primitives to represent abstract objects with
PrimObj. We assume that the primitives implemented in the library satisfy the
above specification.



consts
cgExp :: "variable list ⇒ cexp ⇒ prim instr list"

primrec
"cgExp E (NumExp n) = [Ldc n, PrimCall PrimMkInt]"

"cgExp E (VarExp x) = [ALoad (the (assign E x))]"

"cgExp E (MkCls f xs) = (New f) # cgCls E f xs"

"cgExp E (AppExp f es) = (cgExp E f) @ [CheckCls] @

(cgExps E es) @ [Invoke (length es)]"

· · ·

Fig. 3. Code generation function

The semantics of the virtual machine is based on the semantics of primitives,
and specified as small-step natural semantics. The semantics is defined as an
inductively defined relation with the following type:

consts
exec :: "(class * prim heap * frame * prim codes *

prim heap * frame) set"

Type frame used above, is a record of an operand stack and a local variable envi-
ronment. (D * H * F * C * H’ * F’) ∈ exec means, the heap H and the frame
F are transformed to H’ and F’ respectively by the code C under the class dec-
laration D. We write D`<H,F,C> <H’,F’> to describe this relation.

4.2 Code Generation

The code generation of our compiler is similar to that of other compilers from
functional languages into JVM [3, 1]. We explain the major section of the code
generation phase and the main theorem we verified. The main part of the code
generator is the function that translates an expression into a list of instructions
as shown in Figure 3. In the definition, integer expression NumExp n is translated
into the instruction sequence: Ldc n instruction puts an integer constant n on
the operand stack, and PrimMkInt primitive creates a new integer object from it.

A variable is translated to the load instruction of the local variable obtained
by an assignment function. The assignment function translates a variable into a
local variable according to a list of variables E. It assigns the n-th variable from
the tail of the list to the n-th local variable. This assignment is specified by the
following primitive recursive function.

consts
assign :: "’a list ⇒ ’a ⇒ nat option"

primrec
"assign [] n = None"

"assign (x#xs) n = (if n = x then Some (length xs)

else assign xs n)"



This translation of a variable is correct only if the list of variables used in the
translation satisfies some condition: intuitively, variables in the list must be
distinct, but a weaker condition is sufficient. This is guaranteed by the well-
formedness of the declaration we discuss later in this section.

A function application is translated to a sequence of: a code for the function
part, codes for arguments and method invocation. CheckCls pseudo instruction
interleaved in this sequence checks that the function translated is an instance of
a closure class. This check is required so that a generated code is type-checked
by the bytecode verifier of JVM and translated into checkcast instruction of
JVM.

The most complicated part of the code generation phase is the handling of
closures. A function is represented by a class with one “apply” method. This
class may contain instance variables to keep values for the free variables. When
compiling a function, instructions to create a new instance of the corresponding
class and to store all free variables into the closure is inserted. Storing all free
variables into the closure is accomplished by the following function.

consts
cgCls :: "variable list ⇒ cname ⇒ variable list ⇒ prim codes"

primrec
"cgCls E f [] = []"

"cgCls E f (x#xs) = (cgCls E f xs) @

[Dup, ALoad (the (assign E x)), PutField f x]"

It can be seen that each value is loaded from the corresponding local variable
and stored to a class instance by PutField.

The following is the correctness theorem we verified in HOL.

theorem assumes "(D, [], e, v) ∈ eval" "wf_decls D"

shows "∃ H’ F’. cgDecls D `<newheap,newframe,cgExp [] e> <H’, F’>

∧ (D, H’, v, hd (opstack F’)) ∈ valeq"

The generated code cgExp [] e is executed under the empty heap newheap and
empty frame newframe. The theorem says, if expression e is evaluated to a value v

under a declaration D, the execution of the generated code transforms the empty
heap and frame into heap H’ and frame F’. Furthermore, the value that is on the
top of operand stack F’ corresponds to the value v under the class declaration
D and the obtained heap H’.

In this correctness theorem, well-formedness of the declaration D is essential.
To satisfy this condition, we defined a well-formedness predicate on the source
language as:

– all function names must be distinct.
– the variable names of the arguments of a function must be distinct.
– a function name and the variable names of its arguments must be different.

If a source program is well-formed, we can show that the closure conversion
produces a well-formed declaration. In addition, we can show the condition of



closure conversion shown in Section 3.3 can be satisfied by this predicate. There-
fore, the entire compilation process is correct assuming that the source program
is well-formed.

Note that our verification of the code generator has several limitations. Our
specification of the compiler does not calculate the size of the operand stack and
the number of local variables used in each method. It is not verified that the
compiler produces a code that is compliant with the bytecode verifier of JVM.

5 The Generated Compiler and Its Evaluation

The specification and correctness proof of the compiler is approximately 5000
lines of HOL proof scripts. From this specification, 300 lines of an executable
Standard ML code is generated. To make the compiler executable, we provided
a parser and an output routine written in ML and some library code written in
Java. Codes written in ML and Java are approximately 700 lines and 120 lines
respectively. In this section, we describe integration with hand-written codes and
then present some preliminary experiments with the resulting compiler.

5.1 Integration with Hand-Written Codes

From the specification, we obtain the abstract syntax of the source language.
Types that appears in the abstract syntax are translated to types of ML, ac-
cording to the following declaration:

types code
"variable" ("int")

"int" ("int")

"symbol" ("string")

Among these declarations, translations of int and symbol are essential to co-
ordinate with the parser. The type variable, which is a type synonym of nat,
can be used in our compiler. However, it is obviously inefficient to take nat as a
datatype for the variables and compilation time became from two times to eight
times more inefficient in our experiment. Therefore, we applied this translation.
In the parser, each identifier that occurs in source code is replaced by a fresh
integer value, so that the well-formedness condition required by the correctness
proof is satisfied.

The output routine produces an assembly code in the syntax of the Jasmin
bytecode assembler [10] and this assembler is used to generate a Java bytecode.
Because the instructions of our virtual machine almost directly correspond to
those of the Java virtual machine, writing the output routine for the compiler is
straightforward. One twist was needed in the output routine because a branch
instruction of our virtual machine takes a relative address and Jasmin uses a
label to specify the target address of a branch instruction.

We also formalized a simple dead code elimination. This eliminates a func-
tion definition that is not used in the main expression. The verification of this



Table 1. Compilation time (in seconds)

program #lines vc total vc w/o jasmin bigloo kawa

symbdiff 376 1.87 0.08 0.46 2.90

boyer 552 2.13 0.11 0.32 2.82

sets 349 1.74 0.04 0.55 2.62

sk 181 1.59 0.05 0.25 2.34

art 3008 54.44 51.56 4.22 3.82

optimization was relatively simple compared to the remainder of our verification
and completed in approximately one day. This optimization works in combina-
tion with the other part of our compiler and eliminates unused primitives and
library procedures.

5.2 Experimental Results

We tested the generated compiler on several programs: a symbolic differentiation
program (symbdiff), a tautology checker (boyer), a set module implemented
with a balanced binary tree (sets) and a translator from the lambda calculus to
combinatory logic (sk). These examples were selected from the Scheme repository
and successfully compiled/executed with few modifications.

We compared compilation times of these programs with the existing Scheme
to Java compilers Bigloo and Kawa3. A 650MHz Ultra SPARC IIi processor with
256MB of memory, using: Poly ML 4.1.3, Sun J2SDK 1.4.1, Bigloo 2.6a and
Kawa 1.7 was used for the experiment. Through this comparison, we refer our
compiler as vc (verified compiler). Table 1 shows compilation times. The column
“vc total” shows the compilation time including the time spent by Jasmin, and
the column “vc w/o jasmin” shows the compilation time without Jasmin. The
program “art” is an artificial large example with a large number of variable
definitions. Compilation time of this program is more than ten times slower than
the time for the other two compilers. We consider this problem is caused by the
naive implementation of various data structures: we represented sets by lists and
used association lists to handle identifiers. We think refining the implementation
of data structures used in the compiler is one of the first tasks to make the
compiler realistic.

We also conducted preliminary experiments regarding execution times. we
chose the programs: Fibonnatti function, Takeuchi’s function, eight queen pro-
gram and tautology checker. Results are shown in Table 2. The column “bigloo
opt” shows the execution time of the code generated by Bigloo with optimiza-
tion. Note that the comparison is disadvantageous to Bigloo and Kawa because
our compiler supports only a small subset of Scheme and that simplifies a compi-
lation. Regardless of that, execution times for Bigloo with optimization are much
3 Bigloo is written in C, and Kawa is written in Java. Both compilers were tested

without any command line options



Table 2. Execution time (in seconds)

program vc bigloo bigloo opt kawa

fib 32.12 33.14 1.31 42.72

tak 0.48 0.74 0.62 1.58

queens 2.14 2.13 0.98 12.47

boyer 69.37 6.33 3.62 262.52

faster than those of our compiler. To generate more efficient code, we need to
improve the translations in our compiler and incorporate standard optimizations
such as inlining and constant folding.

6 Related Work

Various system components including language implementations were verified
using the Boyer-Moore theorem prover [4, 12, 19]. The Boyer-Moore theorem
prover is first-order and its specification language is Lisp based. Therefore, their
specification of the language implementations can be executed. Although it is
possible to verify compilers in theorem provers based on a first-order logic as their
works demonstrated, expressiveness of a higher-order logic was of considerable
assistance in verifying the correctness of our compiler.

Oliva, Ramsdell and Wand verified a specification of the VLISP compiler [14].
VLISP compiles a dialect of Scheme designed for system programming. The
semantics of the language is described in denotational semantics. They wrote a
correctness proof of the compiler specification by hand. The compiler is written
based on this specification, but there is no verification of the implementation.

Stepney wrote a specification of a compiler in the Z specification language
and proved correctness of the compiler specification by hand [16]. The speci-
fication was translated into an executable Prolog program by a syntax-based
hand-translation. Stringer-Calvert translated the specification of this compiler
into PVS [15] and verified its correctness [17]. The approach of this work is
closely related to ours in sense that the executable compiler is obtained from
the specification. However, we believe that the code generation of HOL is more
trustworthy and we obtain a more realistic compiler because the translation is
more direct.

The same approach of generating a compiler from the specification was taken
by Curzon [5]. He verified the correctness of an assembler for the high-level
assembly language Vista with the HOL theorem prover [6] and generated an
executable assembler in ML with an automated tool. However, issues concerning
the resulting compiler and its evaluation are not described in detail.



7 Conclusions and Future Work

We have verified a specification of a compiler from a functional language to the
Java virtual machine in Isabelle/HOL. An executable compiler was derived from
the specification with the code generation facility of Isabelle/HOL. In our devel-
opment, most time was spent in proving correctness of the compiler. We think
recent progress in theorem proving have made verification of compilers more fea-
sible. Especially, the human-readable structured proof language of Isabelle[18]
made our verification easier.

The compiler was tested for several Scheme programs and the compile times
were acceptable. However, the compilation of an artificial large program revealed
inefficiency in the compiler.

We are planning to refine and extend our compiler in various respects to
make it more realistic. To compile large examples, we will need to extend the
features supported by the source language and improve data structures used in
the compiler. With respect to performance of code generated by the compiler,
first we wish to refine the algorithms used in the current specification. Second, we
intend to introduce several basic optimizations into our compiler specification,
such as inlining.

References

1. N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java byte-
codes. In Proceedings of the ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’98), volume 34(1), pages 129–140, 1999.

2. S. Berghofer and T. Nipkow. Executing higher order logic. In Proceedings of
International Workshop on Types for Proofs and Programs, volume 2277 of Lecture
Notes in Computer Science, pages 24–40. Springer-Verlag, 2002.

3. P. Bothner. Kawa—compiling dynamic languages to the Java VM. In Proceedings
of the USENIX 1998 Technical Conference, FREENIX Track, New Orleans, LA,
1998. USENIX Association.

4. R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic Press,
1988.

5. P. Curzon. A verified Vista implementation final report. Technical Report 311,
University of Cambridge Computer Laboratory, 1993.

6. M. J. C. Gordon and T. F. Melham. Introduction to HOL : A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, Cambridge,
1993.

7. J. Hannan. A type system for closure conversion. In Proceedings of the Workshop
on Types for Program Analysis, pages 48–62, 1995.

8. G. Klein and T. Nipkow. Verified lightweight bytecode verification. Concurrency
and Computation: Practice and Experience, 13:1133–1151, 2001.

9. G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science,
298:583–626, 2003.

10. J. Meyer. Jasmin home page. http://mrl.nyu.edu/~meyer/jasmin/.
11. Y. Minamide, J. G. Morrisett, and R. Harper. Typed closure conversion. In

Proceedings of Symposium on Principles of Programming Languages, pages 271–
283, 1996.



12. J. S. Moore. A mechanically verified language implementation. Technical Re-
port 30, Computational Logic Inc., 1988.

13. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL : A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

14. D. P. Oliva, J. D. Ramsdell, and M. Wand. The VLISP verified PreScheme com-
piler. Lisp and Symbolic Computation, 8(1/2):111–182, 1995.

15. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Menlo Park, CA,
Sept. 1999.

16. S. Stepney. High Integrity Compilation : a case study. Prentice-Hall, 1993.
17. D. W. Stringer-Calvert. Mechanical Verification of Compiler Correctness. PhD

thesis, Department of Computer Science, University of York, Mar. 1998.
18. M. Wenzel. Isar - a generic interpretative approach to readable formal proof docu-

ments. In Proceedings of International Conference on Theorem Proving in Higher
Order Logics, pages 167–184, 1999.

19. W. D. Young. A verified code generator for a subset of Gypsy. Technical Report 33,
Computational Logic Inc., 1988.


