
XML Validation for Context-Free Grammars

Yasuhiko Minamide1 and Akihiko Tozawa2

1 Department of Computer Science
University of Tsukuba

2 IBM Research,
Tokyo Research Laboratory, IBM Japan, ltd.

Abstract. String expression analysis conservatively approximates the
possible string values generated by a program. We consider the validation
of a context-free grammar obtained by the analysis against XML schemas
and develop two algorithms for deciding inclusion L(G1) ⊆ L(G2) where
G1 is a context-free grammar and G2 is either an XML-grammar or a
regular hedge grammar. The algorithms for XML-grammars and regular
hedge grammars have exponential and doubly exponential time com-
plexity, respectively. We have incorporated the algorithms into the PHP
string analyzer and validated several publicly available PHP programs
against the XHTML DTD. The experiments show that both of the algo-
rithms are efficient in practice although they have exponential complex-
ity.

1 Introduction

String expression analysis conservatively approximates the possible string values
generated by a program [CMS03b]. Minamide adopted context-free grammars
as a foundation of string expression analysis and developed a string analyzer for
PHP [Min05]. We consider the validation of a context-free grammar obtained
by the analysis against XML schemas and develop two algorithms for deciding
inclusion L(G1) ⊆ L(G2) where G1 is a context-free grammar and G2 is either
an XML-grammar or a regular hedge grammar, which are subclasses of context-
free grammars theoretically corresponding to XML schema languages such as
Document Type Definition (DTD) and RELAX NG [CM01].

To simplify the discussion on XML validation, we consider languages over
a paired alphabet. Context-free languages with parentheses or paired alphabets
were studied extensively in the 1960s and 1970s [McN67,Knu67,Tak75]. Let A
be a base alphabet. Then, we introduce a paired alphabet consisting of two sets
Á and À:

Á = { á | a ∈ A } À = { à | a ∈ A }
where Á and À correspond to the set of start tags and the set of end tags,
respectively. We consider that á and à match. We write Σ for Á ∪ À. This
notation is based on Takahashi’s work on context-free grammars [Tak75].

The fundamental notion on a string over a paired alphabet is whether it is
balanced. For example, áb́b̀ćc̀à and áàb́b̀ are balanced, but áb̀ and áb́b̀ are not.

This notion of balanced strings corresponds to well-formed documents in XML.
We call the set of all balanced strings B(Σ) the Dyck set over Σ.

As a balanced subclass of context-free languages, Berstel and Boasson pro-
posed XML-grammars modeling DTDs and studied their formal properties [BB02].
An XML-grammar consists of a set of terminals Σ = Á∪À, a set of nonterminals
V in one-to-one correspondence with base alphabet A, a start nonterminal S,
and a set of productions. For each a ∈ A, there must be a unique production of
the following form:

Xa → áRaà

where Xa is the nonterminal corresponding to a and Ra is a regular expression
over V .

Example 1. Consider the following DTD, taken from [BB02].

<!DOCTYPE a [
<!ELEMENT a ((a|b),(a|b)) >
<!ELEMENT b (b)* >

]>

This DTD can be represented by an XML-grammar with the following produc-
tions:

Xa → á(Xa|Xb)(Xa|Xb)à
Xb → b́X∗

b b̀

where Xa and Xb are the nonterminals corresponding to a and b, respectively,
and Xa is the start symbol.

In this formal setting, validating a context-free grammar against a DTD
corresponds to checking L(G) ⊆ L(Gxml) for a context-free grammar G and
an XML-grammar Gxml. To develop an algorithm checking this inclusion, we
exploit locality in DTDs and XML-grammars. They have locality in the sense
that they can only describe a relation between an element and its children as can
seen in the definition of XML-grammars. The algorithm has exponential time
complexity and is presented in Section 4.

There is a larger class of grammars called regular hedge grammars corre-
sponding to regular tree languages over unranked alphabets [Mur99]. The class
of regular hedge grammars can be formulated as an extension of XML-grammars
where each production has the following form:

X → R

where R is an arbitrary regular expression over áY à. Also there is an alterna-
tive formulation of regular hedge grammars. We obtain grammars of the same
expressiveness by restricting each production to one of the following forms:

X → áY àZ or X → ε.

Example 2. The following is a regular hedge grammar where I is the start sym-
bol.

I → X X → (áY à)∗(áXà)(áY à)∗ X → (áY à)∗(b́Y b̀)(áY à)∗ Y → (áY à)∗

The same language is obtained by the following productions.

I → X X → áXàY X → áY àX X → b́Y b̀Y
Y → áY àY Y → ε

The grammar generates the set of balanced strings over { á, à, b́, b̀ } containing
one pair of b́ and b̀.

There is a regular hedge grammar that cannot be represented as an XML-
grammar. The example above is indeed such a regular hedge grammar. Inversely,
an XML-grammar can always be considered as a regular hedge grammar. We
describe an XML validation algorithm of a context-free grammar against a regu-
lar hedge grammar in Section 3. This makes it possible to validate a context-free
grammar against XML schemas such as RELAX NG which is more expressive
than DTD. This validation algorithm has doubly exponential time complexity.

We introduce two new algorithms for deciding inclusion L(G1) ⊆ L(G2)
for G1 a context-free grammar and G2 either an XML-grammar or a regular
hedge grammar. However, they do not extend known results on subclasses of
context-free grammars for G2, for which the above inclusion problem is decid-
able. Greibach and Friedman considered the inclusion problem for a subclass of
deterministic pushdown automata called superdeterministic PDA [GF80]. They
showed that it is decidable whether L(M1) ⊆ L(M2) for M1 an arbitrary non-
deterministic PDA and M2 a superdeterministic PDA. The complexity of their
algorithm is doubly exponential in the size of the machines. It was also shown
that generalized parenthesis languages studied by Takahashi [Tak75] are superde-
terministic: a generalized parenthesis grammar is translated into a superdeter-
ministic PDA, which is exponential in its size. Since regular hedge grammars
are a subclass of generalized parenthesis grammars, their result is more gen-
eral than ours and we can apply their algorithm to validation of a context-free
grammar against a regular hedge grammar. However, if we naively estimate the
complexity of the validation through a superdeterministic PDA, the complexity
is triply exponential. This is one order of exponential worse than our validation
algorithm.

Hereafter in this paper, we assume that a context-free grammar (CFG) is
reduced. This means that every nonterminal is accessible from the start symbol
and every nonterminal produces at least one terminal string.

This paper is organized as follows. In Section 2, we describe the algorithm of
Berstel and Boasson, which decides whether or not every word of a context-free
grammar is balanced. This is the basis of both of our algorithms. In Sections 3
and 4, we introduce our validation algorithms for regular hedge grammars and

XML-grammars, respectively. In Section 5, we describe the implementation of
the algorithms as backend validators of the PHP string analyzer and show our
experimental results. Finally, we review related work and present some conclu-
sions.

2 Checking Balancedness

One of the most fundamental notions of strings over a paired-alphabet is their
balancedness. Knuth [Knu67] developed an algorithm to decide whether the
language of a context-free grammar is balanced for a language with a single
pair of parentheses. Berstel and Boasson [BB02] extended this for a language
over a paired alphabet.

Proposition 1. Given a context-free grammar G over a paired alphabet, it is
decidable whether or not its language is balanced.

This balancedness check is the basis of validation algorithms because a grammar
G is valid against some XML or regular hedge grammar only if G is balanced.
However, the original algorithm by Berstel and Boasson for this balancedness
check was not efficient as it could be, so that we here give an improved version
of their algorithm.

Berstel and Boasson started from the following observation. We say a string
φ is partially balanced if it is a factor, i.e., substring, of some balanced string. If φ
is partially balanced, we have a = b whenever áψb̀ occurs in φ with ψ balanced.
As a result, each such φ is always uniquely factorized into the following form
with all φi balanced.

φ = φ1à1φ2à2φ3 · · · ànφn+1án+1 · · ·φmámφm+1

Let us define a partial function ρ : Σ∗ ⇀ À∗Á∗ by

ρ(φ) =

{
à1à2 · · · ànán+1 · · · ám φ is partially balanced
undefined otherwise

Observe that (1) φ is balanced iff ρ(φ) = ε, and (2) ρ(φψ) = ρ(ρ(φ)ρ(ψ)) if φ
and ψ are partially balanced. This means that to determine whether all strings
generated from a context-free grammar G are balanced, it is sufficient to check
G under interpretation by ρ.

Example 3. Consider the following grammar.

I → ááXàà X → ààáá X → áXà

The language of this grammar is balanced. A set of strings generated from X is
{ákààááàk | k ≥ 0} whose interpretation by ρ is a finite set {ààáá, àá, ε}. We
can easily see that for each string φ in this set ρ(ááφàà) = ε.

The idea of the balancedness check is to compute the finite set Irr(X)(⊆
À∗Á∗) = {ρ(φ) | X ∗−→ φ} for each nonterminal X. As in the above example,
given a balanced grammar this set is always finite. Furthermore, each length of
φ ∈ Irr(X) is at most exponential to the size of the balanced grammar. These
facts suggest that we can stop the computation of Irr(X) whenever some string
φ ∈ Irr(X) is found to be longer than a given fixed length. This is the idea of
Berstel and Boasson.

Let us look at this idea more precisely. In general, for each nonterminal X,
we have a derivation in the form I

∗−→ ψXζ such that both ψ and ζ are at
most of exponential length to the size of grammar 3. Now, the balancedness
implies that ρ(ψφζ) = ε for any φ such that X ∗−→ φ. We can observe that this
holds iff ρ(ψ), ρ(ζ) and ρ(φ) are in the following forms, ρ(ψ) = b́k · · · b́1án · · · á1,
ρ(ζ) = c̀1 · · · c̀mb̀1 · · · b̀k (an �= cm), and ρ(φ) = à1 · · · ànb̀1 · · · b̀j b́j · · · b́1ćm · · · ć1
(j ≤ k). Hence we have |ρ(φ)| ≤ |ρ(ψ)| + |ρ(ζ)|.

However, this bound is not always small, as shown in the following example.

I → XYn Y0 → à Y1 → Y0Y0 . . . Yn → Yn−1Yn−1

We can see that I ∗−→ X

2n︷ ︸︸ ︷
à · · · à. Therefore, for this grammar to be balanced

(e.g., define rules for X(= Xn) by X0 → á, X1 → X0X0, . . . , Xn → Xn−1Xn−1),
each φ such that X ∗−→ φ should be at most 2n in length. On the other hand,
the grammar is not balanced if we define the following rules:

X → ε X → Xá X → Xb́

where Irr(X) = {á, b́}∗. Unfortunately in checking this unbalancedness, the al-
gorithm by Berstel and Boasson tries to compute subsets of Irr(X) including
words at most of length 2n, i.e.,

⋃
k≤2n{á, b́}k whose size is doubly exponential

to the size of the grammar.
We can relax this double-exponential behavior to exponential by a small

modification to the algorithm. Let 	 be the minimal ordering over À∗Á∗ satis-
fying

φ̀φ́′ 	 φ̀àáφ́′.

Our idea is simply to compute Irr(X) as far as every two elements are consistent
wrt this ordering, i.e., if φ, φ′ ∈ Irr(X) then either φ 	 φ′ or φ′ 	 φ. Again
assume I ∗−→ ψXζ and X

∗−→ φ, φ′. By the previous discussion, if ρ(ψφζ) =
ρ(ψφ′ζ) = ε, we have both ρ(φ) and ρ(φ′) in the form

à1 · · · ànb̀1 · · · b̀j b́j · · · b́1ćm · · · ć1
3 The depth of derivations to compute ψ and ζ is bounded by the number of nonter-

minals n of canonical two normal form [Har78] of G where only the productions of
the following forms are allowed: X → Y Z, X → Y , X → a, and X → ε. Then, the
sizes of ψ and ζ are at most 2n.

Input CFG (V,Σ, P, I).
Output BALANCED or NOT BALANCED.
1 For each X ∈ V , let bound(X) = |ρ(ψ)| + |ρ(ζ)| for some I

∗−→ ψXζ.
2 Set Irr[X] = {} for each X ∈ V
3 For eachX → γ[X1, . . . , Xn] ∈ P where γ[] is a context made from terminal symbols,

and X1, . . . , Xn are nonterminals.
– For each tuple φ1, . . . , φn such that each φi ∈ Irr[Xi],

• Let φ = ρ(γ[φ1, . . . , φn]). If this φ is undefined, return NOT BALANCED.
• If |φ| > bound(X), return NOT BALANCED.
• If φ �� φ′ nor φ′ �� φ for some φ′ ∈ Irr[X], return NOT BALANCED.
• Otherwise, update Irr[X] := Irr[X] ∪ {φ}.

4 If some Irr[X] has been updated, go to 3.
5 If Irr[I] = {ε} then return BALANCED, else return NOT BALANCED.

Fig. 1. The algorithm of balancedness check

with only j differing. Hence ρ(φ) and ρ(φ′) are always consistent wrt 	. In other
words, we can stop the computation of Irr(X) whenever we found an inconsistent
element. We obtain the algorithm in Figure 1 by extending Berstel and Boasson’s
algorithm with this additional consistency check.

To observe the complexity improvement, note that 	 is a linear ordering. So
if Irr(X) only has consistent elements wrt 	, its size is bounded by the maximal
length of strings in Irr(X).

The algorithm presented here still requires exponential time, i.e., 2O(n)-time
where n is the size of the grammar. However, we conjecture that the balanced-
ness check itself is even a PTIME problem. For this, the first step is to simplify
the algorithm to check and remember only the maximal element of Irr(X) ac-
cording to 	, rather than Irr(X) itself.4 The remaining steps involve the use of
a PTIME algorithm for the equivalence of straight line programs [Pla94]. We
do not explain these details in this paper due to space limitation. Because the
balancedness check is a subproblem of validation, and the complexity of our val-
idation algorithms is exponential or doubly exponential, an improvement here
will be canceled out in the analysis of total complexity.

3 Regular Hedge Grammar Validation

In this section, we give the first algorithm of XML validation for CFG. This
algorithm determines

L(G) ⊆ L(Greg)

whereGreg is specified as a regular hedge grammar. This algorithm runs in double
exponential-time, i.e., time complexity bounded by 22p(n)

for some polynomial
p(n), to the size of inputs n.
4 However, Irr(X) as we compute it here is still required in complete qualification of

a grammar used in Section 4.

3.1 Regular Hedge Grammar and Binoid

We first introduce a finite algebra called binoid. We believe that a binoid is a
useful algorithmic tool to solve problems related to XML and DTDs. In theory,
a binoid is similar to a deterministic tree automaton whose size can grow expo-
nentially if we construct it from a nondeterministic tree automaton. However, as
we will see in the experimentation section, binoids are fairly small for practical
XML schemas. For example, we can construct a finite binoid for the XHTML
strict DTD with only 58 elements.

Let B(Σ) be a Dyck set, i.e., the set of balanced strings, over Σ. We have
the following proposition.

Proposition 2. (Existence of binoid) For any regular hedge grammar Greg with
alphabet Σ, we have a finite algebra H(Greg) = (H, ε, F, (̂), (.)) such that there
is a (homomorphic) mapping ◦ : B(Σ) → H such that

(i) ε◦ = ε,
(ii) (áφà)◦ = â(φ◦) for each a ∈ A,
(iii) (φψ)◦ = φ◦.ψ◦, and
(iv) φ ∈ L(Greg) iff φ◦ ∈ F .

This algebra H(Greg) is called a binoid [PQ68]. Similarly to monoids, (.) is
associative and ε is its unit. A difference from monoids is that we now have a
new operator (̂), corresponding to construction of tree node, or enclosure by
parentheses. We can construct a binoid from a regular hedge grammar using a
variation of the algorithm of tree automata determinization [Toz06].

Example 4. A grammar in Example 2 is captured by the following binoid with
three elements.

H = {η0, η1, η�}, ε = η0, F = {η1},
â(ηk) = ηk

b̂(ηk) =

{
η1 (k = 0)
η� (otherwise)

(ηk.ηk′) =

{
ηk+k′ (k + k′ ≤ 1)
η� (otherwise)

We define the homomorphism ◦ as φ◦ = ηk if φ is a balanced string containing
k occurrences, i.e., 0, 1 or
 meaning more than one, of pairs of letters b́ and b̀.
We can easily verify the requirements of binoid, e.g., (b́b̀)◦.(áà)◦ = η1.η0 = η1 =
(b́b̀áà)◦.

The homomorphism (◦) ∈ B(Σ) → H can interpret an arabitrary balanced
word as an element of H so that (1) constructors ε, vw, and áwà for balanced
words are preserved by corresponding operators ε, (.) and (̂), and (2) the
membership for L(Greg) is preserved by the membership for F . We can judge
whether a set of strings is contained in L(Greg) without enumerating true strings
in the set, but rather by enumerating elements of H computed by H’s operators.
This is the basic idea behind our algorithm.

3.2 Validation Algorithm

Assume that G = (Σ,V, P, I) defines a balanced language. We also assume that
we have a finite binoid H(Greg) = (H, ε, F, (̂), (.)) with a homomorphism
(◦) ∈ B(Σ) → H.

As mentioned, the idea of the algorithm is to interpret a set of strings gen-
erated for each nonterminal of G using the algebra H(Greg). However, each
string φ such that X ∗−→ φ is not necessarily balanced, but rather partially
balanced. Therefore, we again use the factorization of φ. Assume that Irr(X) =
à1à2 · · · ànán+1 · · · ám. Each φ is factorized as follows:

φ = φ1à1φ2à2φ3 · · · ànφn+1án+1 · · ·φmámφm+1

where φi are balanced strings. Then, assume that a function ν maps a partially
balanced string φ to ν(φ) ∈ H(ΣH)∗ as follows.

ν(φ) = φ◦1à1φ
◦
2à2φ

◦
3 · · · ànφ

◦
n+1án+1 · · ·φ◦mámφ

◦
m+1

Here à1à2 · · · ànán+1 · · · ám is a member of Irr(X). Since G is balanced and H is
finite, the set {ν(φ) | X ∗−→ φ} for each X is finite. Similar to the algorithm of
the balancedness check, we wish to construct this set by induction.

Let us extend ν(φ) to ν(ω) for words ω ∈ (Σ ∪H)∗. In the following rewrite
rules, we assume σ, σ′ ∈ Σ, υ, ω ∈ (H ∪Σ)∗ and η, η′ ∈ H.

υηηω ⇒ υ(η.η′)ω
υáηàω ⇒ υâ(η)ω

υσσ′ω ⇒ υσεσ′ω
σω ⇒ εσω
ωσ ⇒ ωσε
ε⇒ ε

Now ν(ω) is defined as a normal form such that ω ⇒∗ ν(ω) and ν(ω) can no
longer be rewritten by ⇒. Here, the two rules on the left interpret a given
word using H’s operators. The four rules on the right canonicalize the word
by removing all leftmost, rightmost and two successive occurrences of σ, σ′ ∈ Σ.
Since the rules on the left never introduce such occurrences of σ and σ′, and they
decrease the length of the word, this rewrite terminates. Similar to the discussion
on ρ, we can see that (1) φ◦ = ν(φ) if φ is balanced, and hence ν(φ) ∈ F iff
φ ∈ L(Greg), and (2) ν(ν(φ)ν(ψ)) = ν(φψ) for partially balanced φ and ψ.

Example 5. Some examples using the binoid given in Example 4.

ν(àáàb́) = η0à(áà)◦b́η0 = η0àη0b́η0,

ν(b̀á) = η0b̀η0áη0,

ν(àáàb́b̀à) = ν(ν(àáàb́)ν(b̀á)) = η0àη0.b̂(η0.η0).η0áη0 = η0àη1áη0.

The rest of the algorithm is very close to that of the balancedness check. This
is given in Figure 2.

Input CFGG = (V,Σ, P, I) defining a balanced language, and binoid H(Greg) = (H, ε,
F, (̂), (.)).

Output VALID or INVALID.
1 Set Abs[X] = {} for each X ∈ V
2 For each X → γ[X1, . . . , Xn] ∈ P where X1, . . . , Xn are nonterminals.

– For each tuple ω1, . . . , ωn such that each ωi ∈ Abs[Xi],
• update Abs[X] := Abs[X] ∪ {ν(γ[ω1, . . . , ωn])}.

3 If some Abs[X] has been updated, go to 2.
4 If Abs[I] ⊆ F then return VALID else return INVALID.

Fig. 2. The validation algorithm for regular hedge grammars

3.3 Complexity

The dominant factor of the complexity is the size of Abs[X] for each X. The
number of iterations for the outer loop of the algorithm in Fig. 2 is bounded
by the number of all pairs (X,ω) such that ω ∈ Abs[X]. The inner loop for
X → γ[X1, . . . , Xn] is repeated |P | times, and the innermost for-each is repeated
|Abs[X1]|×· · ·×|Abs[Xn]| times. Computing ν(ω) at most requires time polyno-
mial to |ω| log |H|. The maximal length of strings in Irr(X) is bounded by 2O(|G|).
It is known that the size of H obtained from Greg is at most 2O(|Greg|2). Now for
each X, the size of Abs[X] is at most Σφ∈Irr(X)|H||φ|+1, hence 22O(|G|+log |Greg|) .
The O-notation absorbs all the other factors, giving 22O(|G|+log |Greg|)-time total
complexity of the algorithm, which is doubly-exponential to the size of G.

4 XML-Grammar Validation

We develop a validation algorithm of a context-free grammar against an XML-
grammar (or DTD) by exploiting its locality. DTDs and XML-grammars have
locality in the sense that they can only describe a relation between an element
(tag) and its children, as we described in the introduction. This locality makes
it possible to decide the inclusion problem L(G) ⊆ L(Gxml) for a CFG G and an
XML-grammar Gxml by checking local properties. As a result, we can obtain an
XML-grammar validation algorithm with time complexity 2O(|G|+|Gxml|).

To formalize the idea, we introduce the notion of the trace and the surfaces
of a balanced string by Berstel and Boasson [BB02]. Every balanced string φ is
uniquely written into the following form:

φ = á1φ1à1á2φ2à2 · · · ánφnàn

where φi are balanced strings. The trace of a balanced string picks up only the
base symbol of the toplevel tags. The trace of φ above is the following string.

Trace(φ) = a1a2 · · · an

The surface of a in φ is defined as:

Sa(φ) = { Trace(ψ) | áψà is a substring of φ and ψ is balanced }
This formalizes the set of sequences of tags under the a-tag in φ. For example,
the string áb́b̀ćc̀àád́d̀à has the following surfaces for a and b.

Sa(áb́b̀ćc̀àád́d̀à) = { bc, d } Sb(áb́b̀ćc̀àád́d̀à) = { ε }
By using the surfaces of a string, we can decompose the validation of a

context-free grammar G against Gxml. Consider the following XML-grammar as
an example.

Xa → á(Xa|Xb)(Xa|Xb)à
Xb → b́X∗

b b̀

For the validation, it is sufficient to check the following inclusion relations for
the surfaces of a and b.

Sa(L(G)) ⊆ L((a|b)(a|b)) Sb(L(G)) ⊆ L(b∗)

If we can obtain Sa(L(G)) and Sb(L(G)) as context-free grammars, the inclusion
relations above are decidable since they are inclusion relations between context-
free and regular languages.

We say a context-free grammar is completely balanced if LG(X) is balanced
for every nonterminal of G where LG(X) is the set of strings derivable from
the nonterminal X. If a context-free grammar is completely balanced, then it is
balanced. The other direction does not necessarily apply.

Example 6. The following grammar is balanced, but it is not completely bal-
anced.

A→ áb́Bb̀à

B → ε | b̀b́B
where A is a start symbol. It is not completely balanced because B ∗−→ b̀b́, and
b̀ and b́ are end and start tags, respectively.

In the remainder of this section, we first show that we can compute surfaces if
the grammar is completely balanced and then show that any balanced CFG can
be converted into a completely balanced CFG with the same surfaces. Since the
surfaces are preserved by the conversion, it can be used for validation. However,
the language of the obtained completely balanced grammar may not be same as
that of the original grammar.

4.1 Surfaces of a Completely Balanced CFG

We present an algorithm to obtain the surfaces of a completely balanced context-
free grammar. To simplify the presentation, we restrict the format of productions
of a completely balanced CFG to the following forms:

X → áX1 · · ·Xnà
X → X1 · · ·Xn

It is easy to transform a completely balanced CFG into one with productions
with these forms. From a grammar in this format, it is relatively easy to obtain
the grammars representing its surfaces. The first step is to obtain the productions
to produce Trace(LG(X)) for each nonterminal X. Each production in G is
transformed as follows:

G G′

X → áX1 · · ·Xnà ⇒ X → a
X → X1 · · ·Xn ⇒ X → X1 · · ·Xn

The first rule just picks up a since the strings derived from X1 · · ·Xn are under
the start and end a tags. For example, the productions of the grammar G below
are transformed as follows:

G G′

A→ áà ⇒ A → a

B → b́b̀ ⇒ B → b
C → ε | ACB ⇒ C → ε | ACB
D → ćCc̀ | ćDc̀ ⇒ D → c | c

Then, we can construct the context-free grammar representing the surface of
a in G for each a ∈ A. Consider Sc(L(G)) for the grammar G above. For this
grammar, we have Sc(L(G)) = Trace(C) ∪ Trace(D) because a pair of ć and c̀
occurs only in the following two productions.

D → ćCc̀ D → ćDc̀

Therefore, Sc(L(G)) can be represented with a grammar with the following pro-
ductions:

A→ a D → c
B → b I → C | D
C → ε | ACB

where I is the start symbol. This grammar generates the following language:

Sc(L(G)) = { anbn | n ≥ 0 } ∪ { c }
The context-free grammars for Sa(L(G)) and Sb(L(G)) are constructed in the
same manner. Then, we can validate G against an XML-grammar using the
surfaces.

4.2 Transformation into a Completely Balanced CFG

The rest of our validation algorithm is to transform a balanced CFG into a
completely balanced CFG with the same surfaces. This is the most involved
part of the XML-grammar validation algorithm. The following grammar shows
that there is a balanced CFG that cannot be represented with a completely
balanced CFG [Knu67].

I → Aà A→ á | b́b̀Aćc̀

This grammar generates { (b́b̀)ná(ćc̀)nà | n ≥ 0 }.
We say that a context-free grammar is completely qualified if Irr(X) is a

singleton for every nonterminal X. Given a balanced CFG G, we can construct
a completely qualified CFG G′ where L(G′) = L(G) [Knu67]. Therefore, in this
section, we assume a balanced CFG is completely qualified and write Irr(X) = φ
if Irr(X) = { φ }.

The transformation we introduce is based on the factorization of partially
balanced strings. Consider the following factorization of a partially balanced
string φ:

φ ≡ φ1à1φ2à2φ3 · · ·φmàmφm+1ám+1φm+2 · · ·φnánφn+1

where φi are balanced. We define the i-th factor Fi(φ) of φ as Fi(φ) = φi.
Let G = (V,Σ, P, I) be a balanced CFG. We construct a completely balanced

CFG G′ with the same surfaces as follows. For each nonterminal X, we introduce
nonterminals Xi (1 ≤ i ≤ |Irr(X)| + 1). Let V ′ be the set of nonterminals Xi

introduced above. Then, we define a function F from V to V ′(ΣV ′)∗ as follows:

F (X) = X1à1X2à1X3 · · ·XmàmXm+1ám+1Xm+2 · · ·XnánXn+1

where Irr(X) = à1à2 · · · àmám+1 · · · án. This function F on nonterminals is nat-
urally extended to a function on (Σ∪V)∗ by F (á) = á and F (à) = à for all base
symbol a.

With this function we can expand production X → γ of G as follows.

F (X) → F (γ)

By construction, F (γ) must have the following form:

F (γ) = γ1à1γ2à2γ3 · · · γmàmγm+1ám+1γm+2 · · · γnánγn+1

where γi are balanced by considering that nonterminals are balanced. This is
because G is completely qualified and thus Irr(γ) = Irr(X). Then, we construct
G′ = (V ′, Σ, P ′, I1) where P ′ contains the following productions for each pro-
duction X → γ ∈ P .

Xi → Fi(F (γ)) (1 ≤ i ≤ |Irr(X)| + 1)

It is clear that only balanced strings can be derived from each nonterminal Xi in
G′ since the right-hand side of each production is a balanced factor. Therefore,
G′ is a completely balanced CFG and the following are satisfied:

L(G) ⊆ L(G′)

Sa(G) = Sa(G′) for each a ∈ A

We proved these properties for a CFG G in Chomsky normal form. The first
property is easily shown by construction and the second is obtained from the
following property:

Trace(LG′(Xi)) = Trace(Fi(LG(X)))

An expanded production F (X) → F (γ) above can be considered as a context-
sensitive production rule. To obtain a CFG, we split it into several productions
for factors. This is the source of approximation in the transformation.

Example 7. Consider again the following grammar considered by Knuth:

I → Aà A→ á | b́b̀Aćc̀

where Irr(A) = á and Irr(I) = ε. This grammar generates {(b́b̀)ná(ćc̀)nà | n ≥ 0}.
We have F (A) = A1áA2 and F (I) = I1. Therefore, the productions for A are
expanded as follows:

A1áA2 → á | b́b̀A1áA2ćc̀

From F1(b́b̀A1áA2ćc̀) = b́b̀A1 and F2(b́b̀A1áA2ćc̀) = A2ćc̀, we obtain the follow-
ing grammar:

I1 → A1áA2à A1 → ε | b́b̀A1 A2 → ε | A2ćc̀

This grammar generates { (b́b̀)ná(ćc̀)mà | n,m ≥ 0 }. The constraint between
n and m is lost by the transformation and consequently they do not have the
same language. However, it is clear that it has the same surfaces as those of the
original grammar.

4.3 Complexity

Let n and m be the sizes of a balanced CFG G and an XML-grammar Gxml,
respectively. We assume that the length of the right-hand side of a production of
G is at most two. As described in Section 2, both the cardinality of Irr(X) and
the maximal length of strings in Irr(X) are bounded by 2n for every nonterminal
X in G. We define ι(G) for a balanced CFG G as follows:

ι(G) = max{ |γ| | γ ∈ Irr(X) for some nonterminal X in G }

The first step of the validation algorithm is to obtain an equivalent completely
qualified CFG G1. We can obtain G1 with at most 22n productions by the
transformation of Knuth [Knu67] in time 2O(n). The length of the right-hand
side of a production in G1 is again at most two and ι(G) = ι(G1).

The second step is to obtain a completely balanced CFGG2 that has the same
surfaces with G1. Each nonterminal X with Irr(X) = à1à2 · · · àmám+1 · · · án in
G1 is translated as follows.

F (X) = X1à1X2à1X3 · · ·XmàmXm+1ám+1Xm+2 · · ·XnánXn+1

We have |F (X)| = 2|Irr(X)| + 1 ≤ 2ι(G1) + 1. A production X → γ in G1 is
translated into the following productions.

Xi → Fi(F (γ)) (1 ≤ i ≤ |Irr(X)| + 1)

programs size the numbers of time(sec)
depth Irr(X) nonterminals productions binoid surface

WebCalendar 8 4 102 170 0.0121 0.0492
marktree ∞ 4 32 54 0.0023 0.0127
phpScheduleIt 15 8 24 42 0.0062 0.0191
mrtask 11 6 50 70 0.0059 0.0281

Table 1. XHTML validation

It is observed that each production rule is translated into at most ι(G1) + 1
production rules and |F (γ)| ≤ 2(2ι(G1) + 1) since |γ| ≤ 2. Thus, the size of G2

is bounded by O(22n · ι(G1)) = O(23n) and it is obtained in time 2O(n).
To validate a context-free grammar G2 against an XML-grammar Gxml, we

need to check Sa(G2) ⊆ L(Ra) for each Xa → áRaà in Gxml. The size of the
deterministic automaton for Ra has at most 2m states. Because intersection
emptiness between a context-free grammar and an automaton can be checked
in cubic time, the inclusion relation for each surface can be checked in time
2O(n+m). Thus, the complexity of the algorithm in total is in 2O(n+m).

5 Experimental Results

We have implemented our validation algorithms as backend validators of the
PHP string analyzer developed by Minamide [Min05]. The analyzer generates
a CFG that conservatively approximates the string output of a PHP program.
It is available from http://www.score.cs.tsukuba.ac.jp/~minamide/phpsa/.
In our experiments, we checked the validity of Web pages generated by a PHP
program against the XHTML specification. However, we ignored attributes in
our experiments and only checked the constraints on elements imposed by the
specification. As a preliminary step of validation, the analyzer eliminates com-
ments, attributes, and non-tag texts from a CFG and obtains the corresponding
CFG over a paired alphabet. The transformations for this simplification are im-
plemented as string transducers.

In our implementation of the validation algorithms, we first extract the set
of element names appearing in a CFG obtained by the analyzer and delete the
elements from the DTD that do not appear in the set. Without this optimization,
it takes approximately 0.2 seconds to construct the binoid for the XHTML DTD
and this dominates validation time in the binoid-based validation.

We applied our validation algorithms to several PHP programs available
from SourceForge and validated the top Web pages generated by them. We re-
paired several validity bugs in these programs and had to modify the programs
to improve the precision of the analysis. The experiments were performed on a
Linux PC with two Opteron processors (2.8 GHz) and 8 GB memory. The CFGs

were validated against XHTML version 1.0 Transitional DTD5. Table 1 sum-
marizes our experiments. The first four columns show the various information
concerning the grammars over a paired-alphabet obtained by the analyzer. We
checked the grammars and found that all the grammars are completely qual-
ified. The columns ‘depth’ and ‘Irr(X)’ show the maximum nesting depth of
elements (tags) and the maximum size of Irr(X). In the last two columns, the
table shows the validation time for the binoid-based and the surface-based vali-
dation algorithms6. These do not include the time spent in obtaining the CFGs.
These results show that both algorithms are fast enough for common server-side
programs even if they have theoretically exponential complexity. We think that
it is because the size of Irr(X) is small in practice, as shown in the table, and a
regular expression in a content model of DTD must be deterministic.

It is interesting that the binoid-based validation is faster in these experiments
although it has higher complexity. This may be because the implementation of
the binoid-based validation is simpler than that of the surface-based validation.
However, it is also straightforward to write an artificial program where both of
the algorithms show their exponential behavior. Consider the following program
where $x = $x.$x; $y = $y.$y; is repeated n times.

$x = "<div>"; $y = "</div>";
if (rand()) $x = $x."<p></p>";
$x = $x.$x; $y = $y.$y;
...
$x = $x.$x; $y = $y.$y;
echo $x; echo $y;

The grammar obtained for this program is completely qualified and the size of
Irr(·) for the variables $x and $y is in O(2n). The surface-based algorithm shows
exponential behavior for this program and it takes 1.0, 6.5, and 34.5 seconds to
validate it for n = 10, 11, 12, respectively. On the other hand, the binoid-based
algorithm shows doubly exponential behavior for this program because of the
if-statement in the program and can validate it only when n ≤ 5.

6 Related Work

The PHP string analyzer originally supported only the inclusion checking be-
tween a CFG and a regular expression [Min05]. This checking can partially sup-
port validation of dynamically generated Web pages by restring their depth. It
is because the set of valid Web pages can be described with a regular language
if we restrict their depth. The algorithms in this paper give more direct and
general solutions to the problem.

5 The content model (r)+ was interpreted as (r)∗ in the experiments to circumvent
imprecision due to analysis of loops in a program.

6 We measured the time spent to validate a CFG 100 times. The table shows an
average time calculated from the total time.

The XML validation algorithms presented in this paper depend on previous
work on context-free grammars over languages with parentheses. A parenthe-
sis grammar is a context-free grammar over a language with a single pair of
parentheses where each production has the form of A → (θ) where θ does not
contain parentheses. McNaughtotn showed that equivalence of parenthesis gram-
mars is decidable [McN67]. Knuth extended the result and showed that there
exists an algorithm to determine whether a context-free grammar is a parenthe-
sis language [Knu67]. Berstel and Boasson extended the theory of context-free
grammars over languages with parentheses to study the language described by
a DTD [BB02]. In this paper, we have developed a surface-based validation al-
gorithm by exploiting their results that the language of an XML-grammar has
locality and can be characterized by its surfaces, and the regular hedge grammar
validation based on their algorithm for checking balancedness of a context-free
language.

Extensive studies have been done in tree-based validation of dynamically gen-
erated HTML/XML documents [CMS03a,HP03,HVP05]. The motivation of the
work is the same as ours, but the validation algorithms developed in these works
cannot be directly applied to our setting of string-based validation. As shown
in Section 4, we can retrieve a tree-based language for a balanced CFG with
the approximation preserving surfaces of the language. Thus, after the trans-
formation, the methods for tree-based validation can be applied in principle.
Brabrand, Møller, and Schwartzbach proposed summary graphs to approximate
the set of dynamically generated XHTML documents [BMS01]. Although sum-
mary graphs can express constraints on attributes, they basically correspond to
completely balanced CFGs. The validation of a completely balanced CFG can
be considered as a variant of their validation algorithm for summary graphs.

7 Conclusion

We have presented two new algorithms validating a context-free grammar against
a regular hedge grammar and an XML-grammar. Although both have exponen-
tial complexity, it is shown that they are efficient in practice. Our validation
algorithms for regular hedge grammars and XML-grammars have doubly expo-
nential and exponential time complexity. We plan to establish the lower bounds
for these validation problems. For simpler problems, it is known that the inclu-
sion problems for regular expressions and regular hedge grammars are PSPACE-
complete and EXPTIME-complete, respectively. However, gaps remain between
the results and the complexity of our algorithms.

We have considered validation against a subclass of balanced context-free
grammars, such as XML-grammars and regular hedge grammars, but legacy
server-side programs generate HTML, which is not in XML format. In order to
validate those Web pages, we need to consider validation against a grammar
that has an unbalanced language. Although the inclusion problem between two
context-free grammars is undecidable in general, we think that it is possible to

validate a context-free grammar against the HTML specification because it is
designed to be unambiguous and where end tags are omitted can be determined.

References

[BB02] Jean Berstel and Luc Boasson. Formal properties of XML grammars and
languages. Acta Informatica, 38(9):649–671, 2002.

[BMS01] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static vali-
dation of dynamically generated HTML. In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering, pages 38–45, 2001.

[CM01] J. Clark and M. Murata. RELAX NG specification, 2001. http://www.oasis-
open.org/committees/relax-ng/spec.

[CMS03a] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Ex-
tending Java for high-level web service construction. ACM Transactions on
Programming Languages and Systems, 25(6):814–875, 2003.

[CMS03b] Aske Simon Christensen, Andres Møller, and Michael I. Schwartzbach. Pre-
cise analysis of string expressions. In Proceedings of the Static Analysis
Symposium (SAS), volume 2694 of LNCS, pages 1–18, 2003.

[GF80] Sheila A. Greibach and Emily P. Friedman. Superdeterministic PDAs: A
subcase with a decidable inclusion problem. Journal of the Association for
Computing Machinery, 27(4):675–700, 1980.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory, chapter 4.
Addison-Wesley, 1978.

[HP03] Haruo Hosoya and Benjamin Pierce. XDuce: A statically typed XML pro-
cessing language. ACM Transactions on Internet Technology, 3(2):117–148,
2003.

[HVP05] Haruo Hosoya, Jérôme Vouillon, and Benjamin Pierce. Regular expression
types for XML. ACM Transactions on Programming Languages and Systems,
27(1):46–90, 2005.

[Knu67] Donald E. Knuth. A characterization of parenthesis languages. Information
and Control, 11(3):269–289, 1967.

[McN67] Robert McNaughton. Parenthesis grammars. Journal of the Association for
Computing Machinery, 14(3):490–500, 1967.

[Min05] Yasuhiko Minamide. Static approximation of dynamically generated Web
pages. In Proceedings of the 14th International World Wide Web Conference,
pages 432–441. ACM Press, 2005.

[Mur99] Makoto Murata. Hedge automata: a formal model for XML schemata, 1999.
http://www.xml.gr.jp/relax/hedge nice.html.

[Pla94] Wojciech Plandowski. Testing equivalence of morphisms on context-free
languages. In Algorithms – ESA ’94 (Utrecht), volume 855 of LNCS, pages
460–470. Springer, 1994.

[PQ68] C. Pair and A. Quere. Définition et étude des bilangages réguliers. Infor-
mation and Control, 13(6):565–593, Dec 1968.

[Tak75] Masako Takahashi. Generalizations of regular sets and their application to a
study of context-free languages. Information and Control, 21(1):1–36, 1975.

[Toz06] Akihiko Tozawa. XML type checking using high-level tree transducer. In
Functional and Logic Programming, 8th International Symposium, FLOPS
2006, pages 81–96, 2006.

