
A Functional Representation of Data Structures with a Hole

Yasuhiko Minamide
Research Institute for Mathematical Sciences

Kyoto University
Kyoto 606-01, JAPAN

nan@kurims.kyoto-u.ac.jp

Abstract

Data structures with a hole, in other words data structures with an
uninitialized field, are useful to write efficient programs: they en-
able us to construct functional data structures flexibly and write
functions such as append and map as tail recursive functions. In
this paper we present an approach to introducing data structures
with a hole into call-by-value functional programming languages
like ML. Data structures with a hole are formalized as a new form
of λ-abstraction called hole abstraction. The novel features of hole
abstraction are that expressions inside hole abstraction are evalu-
ated and application is implemented by destructive update of a hole.
We present a simply typed call-by-value λ-calculus extended with
hole abstractions. Then we show a compilation method of hole ab-
straction and prove correctness of the compilation.

1 Introduction

Functional data types such as list are distinguished from imperative
data types such as ref and array in ML, and no destructive operation
is provided for functional data types. This distinction ensures that
there is no side effect for functional data types in ML and makes un-
derstanding of ML programs easier. However, the way functional
data structures are built is very restrictive: they can be built only
in the bottom-up manner. This limitation often prevents us from
writing efficient programs.

In order to construct functional data structures more flexibly we
will introduce data structures with a hole into call-by-value func-
tional languages like ML. By data structures with a hole we mean
data structures with an uninitialized field such as a cons cell whose
tail is not yet given. Data structures with a hole enable us to build
functional data structures more flexibly: functional data structures
can be built in the top-down manner. For example, a list can be
built from the head to the tail.

Theoretically, data structures with a hole can be represented
by usual λ-abstraction: for example, λx.cons(1, x) can be con-
sidered as a cons cell whose tail is a hole. However, this does
not have the intended operational behaviour in call-by-value func-
tional programming languages. It is because an expression inside
λ-abstraction is not evaluated and thus the data structure is not con-
structed at the time of the evaluation of abstraction, but at the time

of the evaluation of application.
Thus in order to represent data structures with a hole we intro-

duce a new form of λ-abstraction λ̂x.M called hole abstraction.
A hole abstraction is evaluated to a pair of a data structure and the
pointer to its hole at runtime. The application of a hole abstraction
fills its hole destructively. In order to create a data structure at the
time of the evaluation of hole abstraction, an expression inside λ̂-
abstraction is evaluated. This implementation of hole abstraction
imposes several restrictions on the usage of hole abstraction.

In order to formalize the idea of hole abstractions, we propose a
simply typed call-by-value λ-calculus extended with hole abstrac-
tions. The type system of the calculus is designed so that the im-
plementation of hole abstraction and application introduces no side
effect and preserves desirable properties of the simply typed call-
by-value λ-calculus. We hide side effects by restricting the use of
hole abstraction to the single-threaded manner [6]. The restriction
is imposed by considering the types of hole abstractions as linear
types [21, 22, 16]. Then we give the operational semantics of the
calculus and prove the soundness of the type system.

By using hole abstractions we have more flexibility on con-
struction of functional data structures than in the conventional call-
by-value functional languages. This enables us to apply some pro-
gramming techniques used for imperative data types to functional
data types. The most significant application is to implement func-
tions such as append and map as tail recursive functions. Fur-
thermore, this tail recursive implementation can be considered as
continuation-passing style transformation of the standard imple-
mentation of these functions: continuations for recursive calls are
represented by hole abstractions.

The next step is to establish a compilation method of hole ab-
stractions. We propose a compilation method which can be incor-
porated into standard compilers with only minimal changes. It is
based on a transformation that converts a general hole abstraction
into a composition of primitive hole abstractions. After this trans-
formation we need only the evaluation of primitive hole abstrac-
tions and do not require the evaluation of an expression inside hole
abstraction. Thus programs can be compiled by a standard compi-
lation method after the transformation. For this transformation, we
prove the correctness by the method of logical relations.

We incorporated some ideas of hole abstractions into an ex-
perimental ML compiler developed by the author. The results of
preliminary benchmarks show about 15 - 40% improvement in ex-
ecution time.

The rest of this paper is organized as follows. In Section 2 we
introduce hole abstraction informally and show how to use hole ab-
straction to write efficient programs, especially tail recursive func-
tions. In Section 3 we present a simply typed call-by-value λ-
calculus extended with hole abstractions and prove the soundness

p

X

q

hcomp(X,Y)happ(X,V)

V

q

Y

Figure 1: Application and Composition of Hole Abstractions

of the calculus. Then we show a compilation method of hole ab-
stractions in Section 4. In Section 5 we discuss implementation and
show how much improvement we can obtain by using hole abstrac-
tions. We discuss related work in Section 6, and suggest directions
for future work in Section 7.

2 Data Structures with a Hole

In the λ-calculus data structures with a hole can be represented by
λ-abstraction. For example, λx.cons(1, x) can be considered as
a cons cell whose tail is a hole. In this representation, the opera-
tion for filling the hole can be done by application: for example,
(λx.cons(1, x)) nil fills the hole with nil.

However, this does not have the intended operational behaviour
in call-by-value functional programming languages. It is because
an expression inside λ-abstraction is not evaluated. Thus a data
structure with a hole is not constructed at the time of the evalua-
tion of λ-abstraction, but at the time of the evaluation of applica-
tion. Furthermore, it is not a desirable representation for efficiency
because creation and application of a closure are not inexpensive
operations.

Thus in order to represent data structures with a hole we intro-
duce a new form of λ-abstraction λ̂x.M called hole abstraction.
We also sometimes consider hole abstractions as a class of func-
tions and say hole functions. For example, the previous example is
represented by λ̂x.cons(1, x). For hole abstractions, we give type
(τ1, τ2) hfun where τ1 is the type of a hole and τ2 is the type of a
resulting data structure.

For efficient implementation of hole abstractions, at run time
hole abstractions are represented by a pair of pointers to a data
structure and its hole as shown in Figure 1: X and Y are hole
abstractions where data structures are represented by triangles, and
p and q are the pointers to the holes.

The primitives for hole abstractions are illustrated in Fig-
ure 1. The primitive happ destructively fills the hole and cor-
responds to function applications as we saw before. The primi-
tive hcomp fills the hole of the first argument with another data
structure with a hole and corresponds to function compositions
of the λ-calculus. It is because in the λ-calculus the composi-
tion of λ̂x.M and λ̂y.N can be reduced to λ̂y.M [N/x] which
represents the composed data structure with a hole. For exam-
ple, hcomp(λ̂x.cons(1, x), λ̂y.cons(2, y)) should be evaluated to
λ̂y.cons(1, x)[cons(2, y)/x] ≡ λ̂y.cons(1, cons(2, y)).

In this representation, the identity hole abstraction, λ̂x.x, can-
not be treated because its body does not construct any data struc-
ture, but it is just a hole. However, the identity hole abstraction

is useful to write programs as we see later in examples. Thus we
represent the identity hole abstraction, λ̂x.x, by a pair of special
values which can be distinguished from other hole abstractions. 1

This implementation of hole abstractions and primitives for
them imposes several restrictions on the usage of hole abstractions.

First, the destructive implementation of happ and hcomp must
be hidden so that no side effect can be seen. This is solved by
restricting operations on hole abstractions to the single-threaded
manner as proposed for introducing imperative operations in pure
functional languages [6, 21]. We impose single-threadedness by
considering (τ1, τ2) hfun as linear types. This makes efficient im-
plementation through destructive update possible without introduc-
ing side effects.

Secondly, an expression inside λ̂-abstraction must be restricted
so that the expression can be evaluated to a data structure with-
out using the value of a variable introduced by λ̂-abstraction. If
we impose no restriction on an expression inside λ̂-abstraction, we
cannot obtain a data structure as a result of the evaluation of the
expression. Let us consider the following program:

λ̂x.case x of nil ⇒ 0 | cons(y, z) ⇒ 1

In this program, x is used in the test of case-expression. However,
the value of x is not yet determined at the time of the evaluation.
Thus we cannot evaluate this expression to a data structure. We also
prohibit application and λ-abstraction containing free variables in-
troduced by hole abstractions. For example, expressions λ̂x.yx and
λ̂x.λy.x are not permitted. This restriction is necessary for our im-
plementation strategy.

Thirdly, hole abstractions must contain exactly one hole. It
is because a hole abstraction is implemented as a pair of point-
ers to a data structure and a single hole. Thus a data structure
with no hole or multiple holes cannot be represented. For ex-
ample, the following programs are not permitted: λ̂x.nil and
λ̂x.cons(x,cons(x, nil)).

2.1 Using Hole Abstractions

In this section we will explain how to use hole abstractions to im-
prove programs. For example programs we use the syntax of Stan-
dard ML and hfn x => M instead of λ̂x.M .

By using hole abstractions we can build functional data struc-
tures more flexibly than in the conventional call-by-value func-
tional languages. Functional data structures can be built in the top-
down manner. For example, the following program creates a list
containing 1 and 2 from the head.

let val y1 = hfn x => 1::x
val y2 = hcomp (y1, hfn x => 2::x)

in
happ (y2, nil)

end

This example starts to create the list from a cons cell where its head
is 1 and its tail is a hole. Another way is to create a list from the
identity hole abstraction as follows:

let val y0 = hfn x => x
val y1 = hcomp (y0, hfn x => 1::x)
val y2 = hcomp (y1, hfn x => 2::x)

in
happ (y2, nil)

end
1By including the identity hole abstraction, the implementation of happ and hcomp

must check whether arguments are the identity hole abstraction.

fun append ([],ys) = ys
| append (x::xs,ys) = x :: append (xs, ys)

fun hfun_append (xs, ys) =
let fun append_rec ([], k) = happ (k, ys)

| append_rec (x::xs, k) = append_rec (xs, hcomp (k, hfn z => x::z))
in

append_rec (xs, hfn x => x)
end

fun flatten [] = []
| flatten (x::xs) = append (x, flatten xs)

fun append’ (k, []) = k
| append’ (k, x::xs) = append’ (hcomp (k, hfn y => x::y), xs)

fun hfun_flatten xs =
let fun flatten_rec (k, []) = happ (k, [])

| flatten_rec (k, x::xs) = flatten_rec (append’ (k, x), xs)
in

flatten_rec (hfn x => x, xs)
end

Figure 2: Using Hole Abstractions for Lists

This kind of the usage of the identity hole abstraction is often useful
to write programs as we see later.

By using data structures with a hole we can write functions
which usually need to construct a data structure by using the return
value of a recursive call as tail recursive functions.

Let us consider the function append in Figure 2. This func-
tion is not tail recursive because consing must be performed af-
ter the recursive call of append. By using hole abstractions the
same function can be implemented as the tail recursive function
hfun_append in Figure 2. For the argument k of append_rec, we
use hole abstractions representing lists whose tail is a hole. The
expression hcomp (k, hfn z => x::z) updates the tail of k by
the new cons cell consisting of x and a hole. That is to say, it adds x
to the right of k. Finally, the result is obtained by updating the tail
of k by ys, i.e., happ(k,ys). The identity hole abstraction is used
for the initial argument. To sum up, hfun_append creates an ap-
pended list from the head. In our measurement this transformation
reduces execution time about 40% as we see later in Section 5.

Another view of this transformation is continuation passing
transformation [17]. If we think k as a continuation and replace
hole functions by usual functions, we obtain append in continu-
ation passing style. Thus it can be considered that continuations
are represented by hole functions. However, if we use usual func-
tions for continuations, the performance of the function is usually
not improved. It is because the function for the continuation grows
through recursive calls as stack grows for the original recursive ver-
sion.

There are many functions producing a list which can be trans-
formed to tail recursive functions. For example, there are 12 func-
tions producing lists in the structure for lists in the proposal of Stan-
dard ML Basis Library. Among them, the following 6 functions can
be converted to tail recursive functions in this way: @, take, map,
mapPartial, filter, tabulate.

Furthermore, the transformation can be implemented as op-
timization that transforms a class of functions into tail recursive
functions automatically. We can check whether the transformation

can be applicable syntactically by checking whether the continu-
ations for recursive calls can be represented by hole abstractions.
This is a significant advantage of our transformation over the con-
ventional optimization which transforms a function into tail recur-
sive one [2, 7]. The conventional transformation usually needs the
knowledge of properties such as associativity of functions for the
transformation.

The previous improvement of programs can be obtained by a
compiler optimization without explicitly introducing hole abstrac-
tions into source languages. However, there are other kinds of us-
ages of hole abstractions. The function flatten in Figure 2 flat-
tens a list of lists to a list by using append. The function flatten
is not tail recursive because append must be performed after the
recursive call of flatten. For better implementation of flatten,
we first prepare the function append’ which has type (’a list,
’a list) hfun -> (’a list, ’a list) hfun and appends
a list to a list whose tail is a hole. Then we can implement
flatten as the tail recursive function hfun_flatten. This func-
tion hfun_flatten can be compiled to efficient code with nested
loops by inlining the definition of append’. However, this defini-
tion of hfun_flatten can be obtained only by using associativ-
ity of append and the following fact: if happ(k, []) = l then
happ(append’(k, x),[]) = append (l,x). Without know-
ing these properties it is not possible to obtain hfun_flatten by
the compiler optimization.

Hole abstractions are useful for other data types than lists. In
Figure 3, hole abstractions are used for the type tree that is the
type for binary trees whose nodes are associated to integers. The
function binsert inserts an integer into a tree and is not tail recur-
sive. As append, the function can be transformed to the tail recur-
sive function hfun_binsert below by using hole abstractions.

However, for data types like trees there are many functions that
cannot be transformed to tail recursive form. For such functions,
although we cannot obtain tail recursive functions, we can often
improve functions by converting the last recursive call to a tail re-
cursive call. For example, addone which adds 1 to the integer as-

datatype tree = Lf
| Br of int * tree * tree

fun binsert (Lf, y) = Br (y, Lf, Lf)
| binsert (Br (x, t1, t2), y) =
if y < x then Br (x, binsert (t1, y), t2)
else if x < y then Br (x, t1, binsert (t2, y)) else raise Bsearch

fun hfun_binsert (t, y) =
let fun binsert’ (Lf, y, k) = happ (k, Br (y, Lf, Lf))

| binsert’ (Br (x, t1, t2), y, k) =
if y < x then binsert’ (t1, y, hcomp (k, hfn t => Br (x, t, t2)))
else

if x < y then binsert’ (t2, y, hcomp (k, hfn t => Br (x, t1, t)))
else raise Bsearch

in
binsert’ (t, y, hfn t => t)

end

fun addone Lf = Lf
| addone (Br (x, t1, t2)) = Br (x + 1, addone t1, addone t2)

fun hfun_addone Lf = Lf
| hfun_addone (Br (x, t1, t2)) =
let fun addone’ (Lf, k) = happ (k, Lf)

| addone’ (Br (x, t1, t2), k) =
addone’ (t2, hcomp (k, hfn t2 => Br (x + 1, hfun_addone t1, t2)))

in
addone’ (t2, hfn t2 => Br (x + 1, hfun_addone t1, t2))

end

Figure 3: Using Hole Abstractions for Trees

sociated to each node includes two recursive calls as shown in Fig-
ure 3. Thus it cannot be converted to a tail recursive function by our
method. However, the function can be converted to hfun_addone
that requires one recursive call of hfun_addone and another tail re-
cursive call of addone’. It should be remarked that the expressions
x + 1 and hfun_addone t1 are evaluated at the time of evalua-
tion of hfn t2 => ..., because an expression inside hfn is eval-
uated. It is possible because they do not contain the variable t2
introduced by hole abstraction.

3 Calculus

In this section we present a simply typed call-by-value λ-calculus
extended with hole abstractions. We design the type system of the
calculus so that the restrictions discussed in the previous section
are imposed. Then we will show some properties of the calculus
including the soundness of the type system. The syntax of the cal-
culus is defined as follows:

types τ ::= b | τ1 → τ2 | τ list | (τ1, τ2) hfun
exp’s M ::= x | c | M1 M2 | λx : τ.M |

nil | cons(M1, M2) |
λ̂x : τ.M | happ(M1, M2) |

case M1 of cons(x1, x2) ⇒ M2 | nil ⇒ M3

We include τ list as a type constructor, and nil and cons(M1, M2)
as expressions for illustration of usage of the calculus and its com-
pilation. The hole composition hcomp(M1, M2) is not included

in the calculus because it can be defined by hole abstractions and
applications as we will see later.

We consider types containing hfun as linear types, though
τ1 → τ2 is always considered a nonlinear type. Thus linear types
are defined as follows:

σ ::= (τ1, τ2) hfun | σ list

The treatment of linear types is based on steadfast types of
Wadler [21, 22]. The type system is designed so that a variable
with a linear type contains the sole pointer [23] and thus we can
perform destructive operations on values of linear types. However,
since linearity is used only for destructive update, values of lin-
ear types are permitted to be abandoned implicitly. In this sense
they are considered as affine types of Jacobs [8] or unique types of
Clean [16].

For the type system of the calculus we use two kinds of con-
texts:

type assignements Γ ::= x1:τ1, . . . , xn:τn

hole contexts H ::= ∅ | x:τ

Type assignments are used for variables introduced by usual λ-
abstraction and hole contexts are used for variables introduced by
λ̂-abstraction. Here we should remark that hole contexts contain
at most one binding. By this restriction we prohibit data structures
with multiple holes represented by nested hole abstractions. For ex-
ample, λ̂x : τ.λ̂y : τ list.cons(x, y) is prohibited. This restriction

(hole) Γ; x:τ � x : τ (var)
x:τ ∈ Γ

Γ; ∅ � x : τ

(hfn)
Γ; x:τ1 � M : τ2

Γ; ∅ � λ̂x:τ1.M : (τ1, τ2) hfun
(happ)

Γ1; ∅ � M1 : (τ1, τ2) hfun Γ2; H � M2 : τ1

Γ1 � Γ2; H � happ(M1, M2) : τ2

(nil) Γ; ∅ � nil : τ list (cons)
Γ1; H1 � M1 : τ Γ2; H2 � M2 : τ list

Γ1 � Γ2; H1 ⊕ H2 � cons(M1, M2) : τ list

(abs)
Γ|N � {x : τ1}; ∅ � M : τ2

Γ; ∅ � λx : τ1.M : τ1 → τ2
(app)

Γ1; ∅ � M1 : τ1 → τ2 Γ2; ∅ � M2 : τ1

Γ1 � Γ2; ∅ � M1M2 : τ2

(case)
Γ1; ∅ � M : τ ′ list Γ2, x:τ ′, y:τ ′ list; ∅ � M1 : τ Γ2; ∅ � M2 : τ

Γ1 � Γ2; ∅ � case M of cons(x, y) ⇒ M1 | nil ⇒ M2 : τ

Figure 4: Type System

is not essential for the definition of the calculus, but it is required
for the simple compilation method presented in the next section.

We say that Γ1 and Γ2 are compatible if for x:τ ∈ Γ1 and
x:τ ′ ∈ Γ2, τ and τ ′ are identical and nonlinear. For compatible Γ1

and Γ2, we define Γ1�Γ2 by the union of the two type assignments.
For type assignments we define Γ|N that is the restriction of Γ to
x:τ for nonlinear τ . We say that H1 and H2 are compatible if
either H1 or H2 is empty. For compatible hole contexts we define
H1 ⊕ H2 by the union of H1 and H2.

The judgement of the type system has the following form:
Γ; H � M : τ . The type system of the calculus is shown in Fig-
ure 4. We summarize the key features of the type system below.

• Variables introduced by λ-abstractions can be abandoned by
the rule (var). However, even for nonlinear types a variable
introduced by λ̂-abstraction is used linearly in a strict sense
and cannot be abandoned implicitly. For example, λ̂x:b.nil
is ill-typed.

• λ-abstractions, applications, and case-expressions can be
typed only with the empty hole context. However, they can be
still used inside λ̂-abstraction if the evaluation of them is not
related to the hole. For example, λ̂x:blist.cons((λx:b.x)c, x)
is well-typed.

• In the rule (happ), M1 of happ(M1, M2) must be typed
with the empty hole context. This restriction is im-
posed because we cannot evaluate expressions such as
λ̂x:(b, τ) hfun.happ(x, c).

• In the rule (abs), only the nonlinear part of Γ, Γ|N , is used
for the typing of the body of a λ-abstraction. It is because
τ1 → τ2 is considered as a nonlinear type.

We define the operational semantics of the calculus in the style
of [25] and prove the soundness of the type system. The operational
semantics of the calculus is defined in Figure 5. We consider a λ̂-
abstraction as a value only if the body of the abstraction is a value.
Evaluation contexts are defined so that evaluation does not occur
inside usual λ-abstraction, but inside λ̂-abstraction. Similar evalu-
ation order is used for the implementation calculus of polymorphic
records of Ohori [13] where evaluation occurs within index abstrac-
tion to preserve the operational semantics of ML. The definition of
reductions is standard and is also shown in Figure 5.

Then evaluation M
−→ M ′ is defined by E[M]
−→ E[M ′] if
M I M ′. We write M ↓ M ′ if M
−→∗ M ′ and M ′ is in normal
form with respect to
−→.

The composition hcomp(M1, M2) can be defined in this cal-
culus as λ̂x:τ.happ(M1, happ(M2, x)) and the reductions inside
λ̂-abstractions result in the intended simplified hole abstraction as
follows:

hcomp(λ̂y1:τ
′.V1, λ̂y2:τ.V2)
−→∗

λ̂x:τ.happ(λ̂y1:τ
′.V1, V2[x/y2])
−→

λ̂x:τ.V1[V2[x/y2]/y1]

The reduction of hcomp should be compared to that of the usual
function composition:

(λx:τ ′.M) ◦ (λy:τ.N)
−→∗ λz:τ.(λx:τ ′.M)((λy:τ.N)z)

Here the original two lambda abstractions still remain even after
reduction.

The following two lemmas show that the evaluation preserves
the type of an expression.

Lemma 1 (Substitution) 1. If Γ�x:τ0; H � M : τ and ∅; ∅ �
V : τ0, then Γ; H � M [V/x] : τ .

2. If ∅; x:τ0 � V1 : τ and ∅; H � V2 : τ0, then ∅; H �
V1[V2/x] : τ .

Lemma 2 (Subject Reduction) If ∅; H � M :τ and M
−→ M ′,
then ∅; H � M ′:τ .

The most important lemma is the following: it claims that the
evaluation of a program cannot get stuck [25].

Lemma 3 If ∅; H � M :τ , then M is a value or M
−→ M ′ for
some M ′.

By combining the previous two lemmas, we obtain the sound-
ness of the type system.

Theorem 1 (Soundness) If ∅; ∅ � M :τ , then M is a value or
M
−→ M ′ and ∅; ∅ � M ′:τ .

Although the calculus we have considered does not include re-
cursion, we think that it is easy to extend the calculus by adding
recursion.

Values:

V ::= c | x | λx:τ.M | nil | cons(V1, V2) | λ̂x:τ.V

Evaluation Contexts:

E ::= [] | E M | V E |
cons(E, M) | cons(V, E) | case E of cons(x, y) ⇒ M1 | nil ⇒ M2 |
λ̂x:τ.E | happ(E, M) | happ(V, E)

Reduction Rules:

(λx:τ.M)V I M [V/x]

happ(λ̂x:τ.V1, V2) I V1[V2/x]
case cons(V1, V2) of cons(x, y) ⇒ M1 | nil ⇒ M2 I M1[V1/x, V2/y]

case nil of cons(x, y) ⇒ M1 | nil ⇒ M2 I M2

Figure 5: Operational Semantics

4 Compilation

In this section we will show a compilation method of hole abstrac-
tions. It is based on a transformation that converts a general hole
abstraction into a composition of primitive hole abstractions. This
transformation is analogous to the translation from the λ-calculus
to combinatory logic found in the standard text [1]. After this trans-
formation we need only the evaluation of primitive hole abstrac-
tions and do not require the evaluation of expressions inside hole
abstractions. Thus programs can be compiled by a standard com-
pilation method after the transformation. We prove the correctness
of the transformation by the method of logical relations.

In this section, we consider hcomp as a primitive that is imple-
mented as we described in Section 2. The reduction rule for hcomp
is defined as follows:

hcomp(λ̂y1:τ
′.V1, λ̂y2:τ.V2) I λ̂y2:τ.V1[V2/y1]

Furthermore, we consider three more hole functions as primitives:
idhfunτ , consheadτ (M), and constailτ (M). They correspond
to λ̂x:τ.x, λ̂x:τ.cons(x, M), and λ̂x:τ list.cons(M, x) respec-
tively. The reduction rules for them are defined as follows:

idhfunτ I λ̂x:τ.x

consheadτ (V) I λ̂x:τ.cons(x, V)

constailτ (V) I λ̂x:τ list.cons(V, x)

The typing rules for the primitives are derived from the definition
and shown in Figure 6. We also extend evaluation contexts as fol-
lows:

E ::= . . . | hcomp(E, M) | hcomp(V, E) |
consheadτ (E) | constailτ (E)

The compilation is defined as a deductive system with judge-
ments of the following form:

Γ; H � M : τ �M ′.

The rules of the deductive system are shown in Figure 7. The rules
can be considered as refinements of the typing rules. Thus it is clear
that if Γ; H � M : τ , then Γ; H � M : τ � M ′ for some M ′.
Conversely, if Γ; H � M : τ �M ′, then Γ; H � M : τ .

There are three rules for cons: (cons) is used if the hole context
is empty, (conshead) and (constail) are used if the hole context is
not empty. There are two rules for happ depending on whether the
hole context is empty or not.

For example, λ̂x:int list.cons((λy:int.y)1, x) is translated to
the following expression.

hcomp(constailint((λy:int.y)1), idhfunint list)

This expression has type (int list, int list) hfun as we expect. Fur-
thermore, it is evaluated as follows:

hcomp(constailint((λy:int.y)1), idhfunint list)

−→ hcomp(constailint(1), idhfunint list)

−→ hcomp(λ̂x:int list.cons(1, x),idhfunint list)

−→ hcomp(λ̂x:int list.cons(1, x), λ̂x:int list.x)

−→ λ̂x:int list.cons(1, x)

This evaluation does not require reductions inside λ̂-abstractions.
Let us check that the derived definition of hole composition in

the previous section is actually compiled to the primitive hole com-
position by this translation. The derived definition of hole composi-
tion of M1 and M2 is λ̂x:τ.happ(M1, happ(M2, x)). This expres-
sion is translated to hcomp(M ′

1, hcomp(M
′
2, idhfunτ)). Then it is

easily shown that this expression is equivalent to hcomp(M ′
1, M

′
2).

The translation rules often introduce redundant identity
hole abstractions. For example, λ̂x.cons(1, x) is translated
to hcomp(constail(1), idhfunint list) and it is clearly equiv-
alent to constail(1). In general it is easily shown that
hcomp(M, idhfunτ) is equivalent to M . By considering that we
obtain the following derived rules. They can be added for removing
redundant identity hole abstractions.

Γ; ∅ � M2 : τ list�M ′
2

Γ; x : τ � cons(x, M2) : τ list� conshead(M ′
2)

Γ; ∅ � M1 : τ �M ′
1

Γ; x : τ list � cons(M1, x) : τ list� constail(M ′
1)

Γ; ∅ � M1 : (τ1, τ2) hfun�M ′
1

Γ; x : τ1 � happ(M1, x) : τ2 �M ′
1

Γ; ∅ � idhfunτ : (τ, τ) hfun
Γ; ∅ � M1 : (τ1, τ2) hfun Γ; ∅ � M2 : (τ3, τ1) hfun

Γ; ∅ � hcomp(M1, M2) : (τ3, τ2) hfun

Γ; ∅ � M : τ list
Γ; ∅ � consheadτ (M) : (τ, τ list) hfun

Γ; ∅ � M : τ
Γ; ∅ � constailτ (M) : (τ list, τ list) hfun

Figure 6: Typing Rules for Primitives

(var)
x:τ ∈ Γ

Γ; ∅ � x : τ � x
(nil) Γ; ∅ � nil : τ list� nil

(hfn)
Γ; x : τ1 � M : τ2 �M ′

Γ; ∅ � λ̂x : τ1.M : (τ1, τ2) hfun�M ′ (hole) Γ; x : τ � x : τ � idhfunτ

(conshead)
Γ1; x : τ � M1 : τ ′

�M ′
1 Γ2; ∅ � M2 : τ ′ list�M ′

2

Γ1 � Γ2; x : τ � cons(M1, M2) : τ ′ list� hcomp(consheadτ ′(M ′
2), M

′
1)

(constail)
Γ1; ∅ � M1 : τ ′

�M ′
1 Γ2; x : τ � M2 : τ ′ list�M ′

2

Γ1 � Γ2; x : τ � cons(M1, M2) : τ ′ list� hcomp(constailτ ′(M ′
1), M

′
2)

(cons)
Γ1; ∅ � M1 : τ ′

�M ′
1 Γ2; ∅ � M2 : τ ′ list�M ′

2

Γ1 � Γ2; ∅ � cons(M1, M2) : τ ′ list� cons(M ′
1, M

′
2)

(happ)
Γ1; ∅ � M1 : (τ1, τ2) hfun�M ′

1 Γ2; ∅ � M2 : τ1 �M ′
2

Γ1 � Γ2; ∅ � happ(M1, M2) : τ2 � happ(M ′
1, M

′
2)

(hcomp)
Γ1; ∅ � M1 : (τ1, τ2) hfun�M ′

1 Γ2; x:τ � M2 : τ1 �M ′
2

Γ1 � Γ2; x:τ � happ(M1, M2) : τ2 � hcomp(M ′
1, M

′
2)

(abs)
Γ|N � {x : τ1}; ∅ � M : τ2 �M ′

Γ; ∅ � λx : τ1.M : τ1 → τ2 � λx : τ1.M
′

(app)
Γ1; ∅ � M1 : τ1 → τ2 �M ′

1 Γ2; ∅ � M2 : τ1 �M ′
2

Γ1 � Γ2; ∅ � M1M2 : τ2 �M ′
1M

′
2

(case)
Γ1; ∅ � M : τ ′ list�M ′ Γ2, x:τ ′, y:τ ′ list; ∅ � M1 : τ �M ′

1 Γ2; ∅ � M2 : τ �M ′
2

Γ1 � Γ2; ∅ � case M of cons(x, y) ⇒ M1 | nil ⇒ M2 : τ
� case M ′ of cons(x, y) ⇒ M ′

1 | nil ⇒ M ′
2

Figure 7: Rules of Compilation

M ∼τ M ′ M ↓ V and M ′ ↓ V ′ and V ≈τ V ′

c ≈b c
nil ≈τ list nil

cons(V1, V2) ≈τ list cons(V
′
1 , V ′

2) V1 ≈τ V ′
1 and V2 ≈τ list V ′

2

V ≈τ1→τ2 V ′ for V1 ≈τ1 V ′
1 it holds V V1 ∼τ2 V ′V ′

1

V ≈(τ1,τ2) hfun V ′ for V1 ≈τ1 V ′
1 it holds happ(V, V1) ∼τ2 happ(V ′, V ′

1)

Figure 8: Logical Relations

For example, by using these rules the derived definition of hole
composition λ̂x:τ.happ(M1, happ(M2, x)) can be compiled to
hcomp(M ′

1, M
′
2) directly.

We define type τH as follows: τ∅ ≡ τ and τx:τ ′ ≡
(τ ′, τ) hfun. Then the following lemma is proved easily by induc-
tion of the derivation of compilation.

Lemma 4 (Type Correctness) If Γ; H � M : τ � M ′, then
Γ; ∅ � M ′ : τH .

This lemma implies that the transformation preserves the type of a
program.

To prove the operational correctness of the transformation, we
use the method of logical relations as many studies on compila-
tion [14, 12]. First, the type-indexed relations ∼τ between closed
expressions of type τ and relations ≈τ between closed values of
type τ are defined in Figure 8. We define the relations on list types,
≈τ list, by the smallest relations satisfying the condition in Figure 8.
Then the relations are well-defined by induction on the structure of
types. Informally, M ∼τ M ′ means that M and M ′ have the same
operational behaviour. The relations ≈τ are extended to the rela-
tions ≈Γ between substitutions. The following lemma states the
key properties of hole functions.

Lemma 5 1. If ∅; x:τ3 � happ(V1, V2) : τ and
∅; ∅ � V : τ3, then happ(λ̂x:τ3.happ(V1, V2), V) ∼τ

happ(V1, happ(λ̂x:τ3.V2, V)).

2. If ∅; ∅ � hcomp(V1, V2) : (τ3, τ2) hfun and ∅; ∅ � V : τ3,
then happ(hcomp(V1, V2), V) ∼τ2 happ(V1, happ(V2, V)).

3. If ∅; x:τ ′ � cons(V1, V2) : τ list and x ∈ FV (V1) and
∅; ∅ � V : τ ′ , then happ(λ̂x:τ ′.cons(V1, V2), V) ∼τ list

cons(happ(λ̂x:τ ′.V1, V), V2).

4. If ∅; x:τ ′ � cons(V1, V2) : τ list and x ∈ FV (V2) and
∅; ∅ � V : τ ′, then happ(λ̂x:τ ′.cons(V1, V2), V) ∼τ list

cons(V1, happ(λ̂x:τ ′.V2, V)).

Now we will show that an expression of type τ and its transla-
tion are related by ∼τ . We use the previous lemma for the proofs
of translations under non-empty hole contexts.

Lemma 6 1. If Γ; ∅ � M : τ � M ′ and γ ≈Γ γ′, then
γ(M) ∼τ γ′(M ′).

2. If Γ; x : τ ′ � M : τ � M ′ and γ ≈Γ γ′, then
γ(λ̂x:τ ′.M) ∼(τ ′,τ) hfun γ′(M ′).

By restricting the previous lemma, we obtain the correctness of
compilation stated as follows.

Theorem 2 (Correctness) Let ∅; ∅ � M : b�M ′. M ↓ c if and
only if M ′ ↓ c.

5 Implementation and Measurement

In this section we will discuss some issues on implementation of
hole abstractions and then show results of some simple bench-
marks. We have implemented some ideas described in this paper
in an experimental ML compiler being developed by the author.
The compiler was originally developed for the study of a ML com-
piler based on explicit type parameter passing in [11] and now pro-
duces assembly code for the core language of Standard ML ex-
tended with structure definitions. All measurements are done on

a ALPHA STATION 500/500 with 8 Mbyte cache memory under
Digital Unix 4.0A.

So far we have not yet implemented general hole abstractions
and the compilation method described in this paper. However,
in order to measure how much improvement we can obtain by
using hole functions we implemented happ, hcomp, and several
other primitive hole abstractions including idhfun, constail, and
conshead. Furthermore, as a phase of the compiler we also imple-
mented the transformation that converts a class of functions pro-
ducing lists into tail recursive functions as described in Section 2.1.

The elaboration phase of the compiler is modified so that
(τ1, τ2) hfun is treated as a linear type. However, for simplicity we
restrict the type system so that polymorphic types are not instan-
tiated by linear types. Although this restriction is not a problem
to write examples in this paper, for greater flexibility we should
consider a type system which keeps track of use of variables more
accurately such as the type system studied by Turner et al. [20].

In the intermediate language of the compiler, we represent hole
abstractions by a usual record of two pointers to a data structure
and a hole. Thus in the intermediate language (’a, ’b) hfun is
represented as follows:

type (’a, ’b) hfun = (’a, ’b) prehfun * ’a hole

The type (’a, ’b) prehfun is the type for pointers to values of
type ’b with a hole of type ’a. The type ’a hole is the type for
holes of type ’a. In our implementation, idhfun is represented by
a pair of null pointers which can be distinguished from the pointers
to heap memory. By using this representation, the standard opti-
mization of flattening records can optimize manipulations on hole
functions. However, by this representation the type system does not
prevent using the hole and the data structure part of a hole function
independently. Thus it is possible to write a program with side ef-
fects on functional data types in the intermediate language.

Our compiler uses tag-free copying garbage collection [19, 11].
There is one problem in implementation of garbage collection in
the presence of hole functions: holes point to middle of objects in
heap memory. Thus we have to treat holes carefully in implementa-
tion of garbage collection. Our strategy is updating the pointers to
holes after usual garbage collection is finished. This works because
if a hole is live, then there is a live object containing the hole.

We measured the effect of using hole abstractions for several
simple programs. The results are shown in Table 1. The columns
stand and hfun show execution time for the standard implementa-
tion and the implementation using hole abstractions for each pro-
gram respectively. For append and msort, we used the auto-
matic transformation converting functions into tail recursive ones
described in Section 2.1. In merge sort, the function for merg-
ing two lists is converted to a tail recursive function. For flatten
we compared the standard implementation using the tail recursive
append and hfun_flatten in Section 2.1. For these functions on
lists, the execution time is reduced more than 20%.

To measure effects on programs producing other data types, we
used the programs binsert and addone in Section 2.1. Improve-
ment obtained for binsert and addone is smaller, but still about
15%. The result for addone indicates that optimization by using
hole abstractions is useful even if a function cannot be converted to
tail recursive one.

6 Related Work

6.1 Linear Types

The calculus we introduced utilizes linearity for efficient imple-
mentation of hole application and composition through destructive

stand hfun hfun/stand Description
append 5.46 3.26 0.60 append lists of length 500, 100000 times
flatten 2.80 2.22 0.79 flatten a list of length 500 of lists of length 5, 10000 times
msort 10.03 7.33 0.73 sort a list of length 500 by merge sort, 10000 times

binsert 19.24 15.90 0.83 insert 5000 integers into a binary tree, 1000 times
addone 3.85 3.26 0.85 add 1 to each node of a tree of depth 8, 100000 times

Table 1: Execution time (sec)

operations. The linearity we used does not directly correspond to
that of linear logic [5], but that for destructive updates used in [21].
However the linearity itself is not sufficient to express data struc-
tures with a hole and associated operations. It is because we have
to maintain two pointers to a data structure: one is to the top of the
data structure and the other is to the hole.

6.2 Tail Recursion Modulo Cons

Several researchers have studied transformation to convert func-
tions which require construction of a data structure using the value
of the recursive call into tail recursive functions [9, 24, 3]. This
kind of recursion is called tail recursion modulo cons in [24]. In
those studies the transformation similar to that in Section 2.1 is for-
mulated as a translation to an imperative language with destructive
operations on functional data types. In contrast we can formulate
the transformation without introducing explicit destructive opera-
tions.

Recently Cheng and Okasaki implemented this optimization for
the TIL compiler [3, 18]. They discuss issues related to garbage
collection and report similar improvement in their benchmarks.

6.3 Logical Variable

Logical variables are introduced in pure functional programming
languages to use programming techniques developed for logic pro-
gramming languages such as difference-list [10, 15]. Values for
logical variables are determined by giving constraints as for vari-
ables of logic programming languages. Thus an unconstrained log-
ical variable can be used to represent a hole. Logical variables are
usually implemented by using graph reduction. Thus it is not clear
that it can be incorporated with call-by-value functional program-
ming languages without significant changes of implementation.

7 Future Work

It is natural to consider data structures with multiple holes: for ex-
ample, a cons cell where both car and cdr are holes. We think
that the extension is possible just by extending hole contexts to the
form x1:τ1, . . . , xn:τn, though we have not yet checked the details.
However, it does not seem easy to develop an efficient method of
compilation for the extended calculus.

Another topic for future work is to prove the correctness of
compilation based on a low level operational semantics. The se-
mantics we used does not capture sharing of objects and destructive
implementation of hole application. We are working on the correct-
ness proof based on a low level semantics similar to the semantics
used to prove properties of a language based on linear logic [4].

Acknowledgements

This work is partially supported by Grant-in-Aid for Encourage-
ment of Young Scientists of Japan No. 09780271. We would like
to thank Jacques Garrigue, Masahito Hasegawa, Koji Kagawa, At-
sushi Ohori, and the anonymous reviewers for their many helpful
comments and suggestions.

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics. Horth-Holland, 1984.

[2] R. M. Burstall and J. Darlington. A transformation system for
developing recursive programs. Journal of ACM, 24(1):44–
67, 1977.

[3] P. Cheng and C. Okasaki. Destination-passing style and gen-
erational garbage collection. Unpublished, 1996.

[4] J. Chirimar, C. A. Gunter, and J. G. Riecke. Proving mem-
ory management invariants for a language based on linear
logic. In Proc. ACM Conf. Lisp and Functional Program-
ming, pages 139–147, 1992.

[5] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50(1), 1987.

[6] J. C. Guzmán and P. Hudak. Single-threaded polymorphic
lambda calculus. In IEEE Symp. on Logic in Computer Sci-
ence, 1990.

[7] G. Huet and B. Lang. Proving and applying program trans-
formations expressed with second-order patterns. Acta Infor-
matica, 11, 1978.

[8] B. Jacobs. Semantics of weakening and contraction. Annals
of Pure and Applied Logic, 69:73–106, 1994.

[9] J. R. Larus. Restructuring Symbolic Programs for Concur-
rent Execution on Multiprocessors. PhD thesis, Computer
Science Division, University of California at Berkeley, 1989.
USB/CSD 89/502.

[10] G. Lindstrom. Functional programming and the logical vari-
able. In Proc. ACM Symp. on Principles of Prog. Languages,
pages 266 – 280, 1985.

[11] Y. Minamide. Compilation based on a calculus for explicit
type passing. In Second Fuji International Workshop on
Functional and Logic Programming, pages 301–320. World
Scientific, 1996.

[12] Y. Minamide, G. Morrisett, and R. Harper. Typed closure
conversion. In Proc. ACM Symp. on Principles of Prog. Lan-
guages, pages 271 – 283, 1996.

[13] A. Ohori. A compilation method for ML-style polymorphic
record calculi. In Proc. ACM Symp. on Principles of Prog.
Languages, 1992.

[14] A. Ohori. A polymorphic record calculus and its compilation.
ACM Transaction on Programming Languages and Systems,
17(6), 1995.

[15] K. K. Pingali. Lazy evaluation and the logic variable. In D. A.
Turner, editor, Research Topics in Functional Programming,
pages 171–198. Addison-Wesley, 1987.

[16] R. Plasmeijer and M. van Eekelen. Language Report CON-
CURRENT Clean Version 1.1. 1996.

[17] G. D. Plotkin. Call-by-name, call-by-value and the λ-
calculus. Theoretical Computer Science, 1(2), December
1975.

[18] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML.
In Proc. ACM SIGPLAN Conf. on Programming Language
Design and Implementation, 1996.

[19] A. Tolmach. Tag-free garbage collection using explicit type
parameters. In Proc. ACM Conf. Lisp and Functional Pro-
gramming, pages 1–11, 1994.

[20] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type.
In Functional Programming Languages and Computer Archi-
tecture, 1995.

[21] P. Wadler. Linear types can change the world! In Program-
ming Concepts and Methods, 1990.

[22] P. Wadler. Is there a use for linear logic? In Partial Evaluation
and Semantics Based Program Manipulation, 1991.

[23] P. Wadler. A taste of linear logic. In Mathematical Founda-
tions of Computing Science, 1993. LNCS 711.

[24] P. L. Wadler. Listlessness is Better than Laziness. PhD thesis,
Computer Science Department, Carnegie-Mellon University,
1985. CMU-CS-85-171.

[25] A. K. Wright and M. Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38–
94, 1994.

