A New Criterion for Safe Program
Transformations

Yasuhiko Minamide

Institute of Information Sciences and FElectronics
University of Tsukuba
and
PRESTO
Japan Science & Technology Corporation

Email: minamide@score.is.tsukuba.ac. jp

Abstract

Previous studies on safety of program transformations with respect to performance
considered two criteria: preserving performance within a constant factor and pre-
serving complexity. However, as the requirement of program transformations used
in compilers the former seems too restrictive and the latter seems too loose. We
propose a new safety criterion: a program transformation preserves performance
within a factor proportional to the size of a source program. This criterion seems
natural since several compilation methods have effects on performance proportional
to the size of a program. Based on this criterion we have shown that two semantics
formalizing the size of stack space are equivalent. We also discuss the connection
between this criterion and the properties of local program transformations rewriting
parts of a program.

1 Introduction

Recent compilers utilize advanced program transformations to obtain high-
performance executable code. For these advanced program transformations,
it is not so straightforward to guarantee that they are safe with respect to
performance. In fact, some program transformations have been shown to
improve the performance of most programs, while degrading the performance
of some programs severely [9,12].

To remedy this situation, several papers have discussed the safety of pro-
gram transformations based on semantics formalizing the performance of pro-
grams [7,6,11,2,8]. In those studies, two safety criteria for whole-program
transformations were discussed. However, these criteria do not seem appro-
priate to impose on program transformations used in compilers, for reasons we

This is a preliminary version. The final version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume4l.html

discuss below. In this paper we focus on the space requirement of programs in
call-by-value functional languages, but the general framework can be adopted
for other languages and performance metrics.

The first of the above two criteria ensures that a program transformation
preserves space requirement within a constant factor. If a program trans-
formation satisfies this property, we say that the program transformation is
space efficient. Many program transformations seem to satisfy this criterion,
but there are some useful transformations that do not satisfy this criterion.
Furthermore, to show this criterion is satisfied we must formalize the de-
tails of semantics formalizing space requirements. In the study of the CPS
transformation, it was necessary to revise the space profiling semantics of a
call-by-value functional language by Blelloch and Greiner [3], to show that
this transformation satisfies this criterion [8].

The second criterion is space safety: a program transformation is space
safe if it does not raise the complexity of programs. Clearly, program trans-
formations used in a compiler must satisfy this criterion. However, we think
that this criterion is too loose. This criterion does not impose any restric-
tion for programs without inputs. However, showing space safety is simpler
than showing space efficiency, in the sense that it is possible to adopt a sim-
pler profiling semantics that ignores details such as sizes of closures and stack
frames.

In this paper we propose a new criterion that falls between the above two
criteria. The new criterion is that a program transformation preserves the
space requirement within a factor proportional to the size of a source program.
Most useful transformations used in a compiler seem to satisfy this criterion.
This criterion seems natural because several compilation methods have effects
on performance proportional to the size of a program. Furthermore, we can
show this criterion based on semantics ignoring some details as we show space
safety.

Based on the new criterion we have shown that two semantics of a simple
call-by-value functional language profiling stack space are equivalent. One
models evaluation by an interpreter and the other models execution based
on compilation. They are not equivalent in the sense of space efficiency, but
they are equivalent in the sense of our new criterion. We also show that A-
normalization preserves stack space modeled by the second semantics. This
backs the claim that the second semantics models stack space required for
execution based on compilation.

The criterion we propose is a property of a whole-program transformation.
On the other hand, some transformations used in compilers are based on local
program transformations. We therefore also study the connection between
the properties of local transformations and the properties of global transfor-
mations. We will show that some restricted class of local transformations
induces whole-program transformations satisfying our new criterion.

This paper is organized as follows. We begin by reviewing the two safety
criteria discussed in previous studies and discussing why they are not suit-
able as the criterion we impose on the transformations used in a compiler.
In Section 3 we introduce our new safety criterion and the equivalence of se-
mantics on a programming language induced by the criterion. In Section 4,
based on this new safety criterion, we show that two operational semantics
of a call-by-value functional language are equivalent. In Section 5 we discuss
the connection between the properties of local transformations and our new
criterion. Finally, we give our conclusions and directions for future work.

2 Safety criteria of program transformations

We review the safety criteria of program transformations with respect to per-
formance discussed in previous studies. To formalize safety criteria we must
first develop semantics to formalize performance of programs. We call such
semantics profiling semantics. For a simple programming language, profiling
semantics can be given as a partial function eval(M):

eval (M) = (v,n)

This function gives the computation result v and a non-negative integer n,
which represents such performance values of programs as execution time or
space required for execution.

In this paper, to simplify our discussion, we focus on the space requirement
of a program and ignore the computation result. For this purpose we define
space(M) as below:

space(M) = n iff eval(M) = (v,n) for some v

This function is only defined if the evaluation of M terminates. We call
this semantics for specifying space required for execution of a program space
semantics.

Let us now review two space safety criteria of program transformations
discussed in previous work [1,3,8]. In this paper, we consider a program trans-
formation as a binary relation between programs in a source language and
a target language. Let us consider a program transformation ~» between a
source language and a target language that have space semantics space(M)
and space’(M') respectively: M ~» M’ means that M is translated to M’ by
the program transformation.

The first criterion ensures that a program transformation preserves the
space required for execution of a program within a constant factor.

Definition 2.1 We say that a program transformation ~» is space efficient if
constants k; and ko exist such that:

space(M) =n = space'(M') < kin + ks
3

for any programs M and M’ with M ~» M.

We admit constants k; and ke because they seem dependent on the details
of definition of space semantics and not essential. Moreover, there are several
transformations in which k; > 1 is required to show this property. This
property was first discussed by Blelloch and Greiner for an implementation
of NESL [3]. Minamide also showed that the CPS transformation is space
efficient [8].

The second criterion is called space safety: a transformation is space safe
if it does not increase the space complexity of programs [1]. To formalize
this idea we must consider programs with an input; thus we can consider a
programming language with input commands and the semantics space(M, I),
which formalizes the space required for execution of the program M for the
input 1.

Definition 2.2 We say that a program transformation ~» is space safe if for
any programs M and M’ such that M ~» M’ constants k; and ko exist such
that for any input I the following holds:

space(M,I) =n = space'(M',I) < kin+ ko

The key difference from space efficiency is that the constants k; and ks
are program-dependent. Space efficiency usually implies space safety because
space efficiency provides the constants k; and ks to show space safety without
depending on programs.

Although many program transformations used in compilers seem space
efficient, some useful transformations are not space efficient, but only space
safe. Furthermore, to show that a program transformation is space efficient
we must consider too many details of the operational semantics of the source
language. In the study of the CPS transformation it was necessary to revise
the semantics proposed by Blelloch and Greiner [3] to show that the CPS
transformation was space efficient [8].

Code motion is a typical example of a transformation that is space safe,
but not space efficient. Consider the following expression where M is a pure
expression that contains the variable n but does not contain a function appli-
cation:

O
let val x = M in loop (n - 1) end

fun loop O
| loop n

The value of M is loop-invariant, thus we want to hoist the binding of x as
follows:

val x = M
fun loop 0 = ()
| loop n = loop (n - 1)

This usually improves the performance of the program. However, if the func-

4

tion loop is used only as loop 0 or is not actually used, this transformation
results in extra computation of M. The extra time and space to evaluate M is
not uniformly bounded by a constant, but depends on M.

On the other hand, space safety seems too weak as a requirement of trans-
formations used in compilers. Space safety is trivial for programs without
inputs. Even for programs with inputs, it is impossible to estimate the per-
formance of a program since the constants k; and ko are program-dependent.
Thus in this paper we propose a new criterion that falls between space effi-
ciency and space safety.

3 A new criterion

In this section, we propose a new safety criterion for program transforma-
tions. First, to simplify our discussion, we compare two space semantics of a
programming language.

Let us consider two space semantics spaceq(M) and spacea(M) of a pro-
gramming language. As a natural extension of space efficiency, we can consider
the following property: there exists a polynomial f such that

spacey (M) =n = spacey(M) < f(n)

However, this property is not suitable as a criterion that space,(M) is safe
with respect to space;(M). By extending the language and the semantics
with inputs, we have the following property:

space,(M,I) =n = spacey(M,I) < f(n)

Even if this holds, it might happen that for an input of size n space; requires
n space, but space, requires n* space, because f(x) = x2. Thus, this extended
property does not imply safety and is therefore not suitable as a criterion that
space, is safe with respect to space;.

When we consider various semantics of a language, the difference in space
usage often depends on the size of a program. Thus, it is natural to consider
the following relation of semantics.

Definition 3.1 We say that the semantics space; is weakly simulated by
space, if

space, (M) =n = spacey(M) < fi(|lM|)n + fo(|M])

where fi(x) and fy(x) are polynomials with positive coefficients and |M]| is
the size of M.

Hereafter in this paper we simply say “a polynomial” for “a polynomial
with positive coefficients.”
This relation induces equivalence of semantics as follows.

>

Definition 3.2 We say that semantics space; is weakly space equivalent to
space, if space, is weakly simulated by space, and space, is weakly simulated
by space;.

Most reasonably defined semantics of a language seem weakly space equiv-
alent. Moreover, it is possible to define simpler semantics weakly space equiv-
alent to the semantics considered in previous studies.

Example 3.3 Let space; be a semantics of a functional language that ac-
counts for the sizes of closures: the size of a closure with n free variables is
n + 1. Let space, be a semantics where the sizes of closures are ignored: the
sizes of closures are always 1. Then space; and space, are weakly equivalent,
since the sizes of the closures constructed during evaluation of a program are
bounded by the size of the program.

Example 3.4 Let space; and space, be a semantics that accounts for the size
of each stack frame and a semantics that ignores the size of each stack frame,
respectively. Then space; and space, are weakly equivalent, since the sizes of
the stack frames constructed during evaluation of a program are bounded by
the size of the program.

Although these examples are rather straightforward, they show that we
can adopt a simple space semantics when we consider weak simulation. We
will also show that two space semantics profiling stack space are equivalent in
Section 4. The proof of this equivalence requires detailed analysis of the space
semantics.

Now we extend weak simulation as a safety criterion for program transfor-
mations. Consider a program transformation ~» between a source language
and a target language that have space semantics space(M) and space’ (M’),
respectively, as before.

Definition 3.5 We say that a program transformation ~» is weakly space
efficient if polynomials fi(z) and fa(z) exist such that:

space(M) =n = space’(M') < fi(|M|)n + f2(|M])
for any programs M and M’ with M ~» M'.

This criterion clearly falls between space efficiency and space safety. It
admits that a program transformation degrades performance within a factor
dependent on the size of a program. This gives us much more freedom to
design program transformations used in compilers than is possible with space
efficiency.

To construct a compiler that is a weakly efficient transformation as a whole,
the composition of transformations must be weakly space efficient since actual
compilers consist of many phases. To make the composition weakly space

6

efficient we should restrict program transformations so that the expansion of
the size of a program is limited by some polynomial.

Definition 3.6 We say that a program transformation M ~» M’ is polyno-
mial size safe if |[M’| < f(|M]) for all programs M where f(z) is a polynomial
of x.

This is a natural restriction because actual compilers already avoid expo-
nential blowup of code size. We can now construct a weakly space efficient
compiler by composing weakly space efficient and polynomial size safe trans-
formations.

Theorem 3.7 Let ~»1 and ~»9 be program transformations from Ly to Lo and
from Lg to Ls respectively. If ~»1 is weakly space efficient and polynomial size
safe, and ~»o is weakly space efficient, then their composition ~»1 o ~»9 1S a
weakly space efficient transformation from Ly to Ls.

Proof. Let M ~»; o ~»9 N. Then P exists such that M ~»; P and P ~» N.
By weak space efficiency we have:

spacey(P) < fl(|M|)space, (M) + fy(|M])
spacez(N) < f2(|P|)spacey(P) + f3(|P])

By polynomial size safety we have |P| < g(|M]). Then:

spaces(N) < f{(g(IM]))(fi (IM])space, (M) + f5 (IM])) + £3(g(|1M]))

Here, f7(g(x))fi(x) and f7(g(x))f3(z) + f3(g(x)) are clearly polynomials of
. O

This proof clarifies why we adopted a polynomial instead of a linear func-
tion in the definition of weakly efficient transformation. Even if two trans-
formations are bounded by linear functions of the size of a program, their
composition is not necessarily bounded by some linear function.

4 Weak equivalence on stack space

In this section we consider two space semantics profiling stack space for a
simple call-by-value functional language. One semantics models evaluation by
an interpreter and the other models evaluation based on compilation. Both
semantics properly model tail calls. We show that although they allocate
different numbers of stack frames during evaluation, the semantics are weakly
space equivalent. Furthermore, it is shown that A-normalization preserves
stack space for the second semantics.

7

Etclic EraliEx) EFX XM |, {(cdE z, M)

EFM | (dE 2, M) Et M |mve Elvs/a]tM |0
E = MM, lmax(l+17m+1an) v

Fig. 1. Operational semantics profiling stack size (interpreter-based)

4.1 FEquivalence of two semantics profiling stack space

We consider the following untyped call-by-value A-calculus with a constant c:
M:o=x | c| MM | MiM,

We define two space semantics space; (M) and spacey(M) by deductive sys-
tems. For the definition of the deductive systems, we first define values: a
value v is either a constant ¢ or a closure (cl F,z, M) consisting of an envi-
ronment £ mapping variables to values, a variable and an expression.

vi=c | (cdE,x, M)

The space semantics space; (M) models evaluation by an interpreter and is
defined by the deductive system given in Figure 1.

spacey(M) =n iff O = M |, v

The space semantics space; (M) models stack space required for execution
based on compilation and is defined by the deductive system given in Figure 2.

spacey(M) =n iff O, M |, v

The deductive system is defined mutually inductively by the following two
judgments: E H, M |, v models execution at tail call positions and E H4
M |, v models execution at non-tail call positions. The application at a tail
call position does not allocate a new stack frame. In the figure, we write
Ere M |,vfor EFL M |, vand EFYy M |, v.

We have shown that the two semantics space; (M) and spacey(M) are
weakly equivalent.

Theorem 4.1 If)= M |;v and Oy M |y v, theni' +1 <4 < |M]-(i' +1).

To prove this theorem we must generalize the claim so that non-empty
environments can be treated. To treat non-empty environments we define the

8

E"QCloc El‘gl’loE(l’) El_g)\.I‘Ml() <C|E,3§',M>

Ery My Ly (B 2, M) EFy My |ynve E'vg/a]) M |, v
E "3 M, M, lmax(l,m,n—H) v

Ery My |y (B 2, M) B3 My |pnve Ellvs/a] b5 M v
E "5 M1M2 lmax(l,m,n) v

Fig. 2. Operational semantics profiling stack size (compiler-based)

size of a value and an environment as follows:

clp = 0
(B M), = max(|E]o,|M],)
|E|, = e max{|E(z)|, | x € Dom(FE)}

Then the theorem is generalized to the following lemma. This lemma is proved
by induction on the derivation of evaluation.

Lemma 4.2 Let K be a constant such that |M| < K and |E|, < K.
(i) IfE-M |;vand EFY M |y v, theni' +1<i< K- (' +1).
(i) If B M ;v and By M Ly, thend <i < K -i' +|M].

4.2 Preservation of stack space by A-normalization

In this section we show that A-normalization preserves stack space given by
spacey(M) and thus spacey(M) actually models execution based on compi-
lation. This also shows that A-normalization is weakly space efficient with
respect to space; (M).

We define the syntax of the language of A-normal forms as follows:

Values Vie=ao | .M
Ezpressions M =V | ViVy | let x = ViV in M

The application V;V5, represents tail calls and the application in let x =
V1V, in M represents non-tail calls.

The semantics of this language is naturally given by the C, EK Machine
defined in Figure 3 [5]. In this operational semantics continuation clearly

9

State S = (M, FE, K)
Continuation K = stop | (arx, M, E, K)

Transition Rules:

(v, E,(arz, M, E' | K")) — (M, E'[y(v, E)/z], K
(let x=ViVoin M, E, K) — (M', E'[Va/x], (ar x, M, E, K"))
where y(V1, E) = (clz, M', E')
(WVa, B, K) = (M', E'[V2 /], K)
where y(V1, E) = (clz, M', E')

E(z) fvV=u
(clx, M,E) if V= e.M

V(V’ E) =

Fig. 3. The C, EK Abstract Machine

corresponds to stack. The size of continuation is naturally defined as follows:

size(stop) = 0
size({ar x, M, E, K)) = size(K) + 1

In this definition we ignore the size of each frame because it is bounded by
the size of the program and we discuss weak space efficiency in this paper. To
discuss space efficiency it is natural to count the number of free variables of
M.

The stack space of state (M, E, K) is defined by size(K). Then we define
the space semantics of this language as follows: space ,(M) = n if (M, (), stop) —*
(V, E" stop) and n is the maximum size of the states in the transition.

A-normalization can be defined as one pass translation [5,4]. In the follow-
ing definition, we use a two-level lambda calculus where A and @ are meta-level
abstraction and application. ||M||4x translates expressions at non-tail call
positions and ||M]|’, translates expressions at tail call positions. The entire

10

program is translated by ||M]|,.

[|a ==

Az M|a = Az.||M||'s

IV |[ak = kQ|V]4
|| M1 Ms||ak = HMlHA(Xxl.HMgl]A(Xxg.let Z = x1%9 in K,@Z))
o[y = [v]a

|MML[[y = |[Mi||a(Aar || Ma]| a(Awo.212))

Then it is shown that the stack space required for execution is preserved by
A-normalization.

Theorem 4.3 If spaces(M) = n, then space,(||M||y) = n.

This theorem shows that spacey (M) models the stack space required for
execution based on compilation. Furthermore, since spacej(M) is weakly
equivalent to space} (M), it is enough to consider space; (M) even when we
consider weak efficiency of program transformations with respect to execution
based on compilation.

5 Local transformations

In this section we discuss the connection between our new criterion and the
properties of local program transformations. We show that some class of local
transformations induces weakly space efficient transformations.

Based on the classification of local transformations by Gustavsson and
Sands [7] we define two classes of local transformations.

Definition 5.1 Let R be a relation on terms of a programming language.

(i) We say that R is a strong improvement relation if we have:
space(C[M]) =n = space(C[N]) <n

for all (M,N) € R and all context C|-] producing a whole program for
M and N.

(ii) We say that R is a weak improvement relation if there exists some linear
function f such that the following holds for all (M, N) € R and all context
C[-] producing a whole program for M and N.

space(C[M]) =n = space(C[N]) < f(n)

11

We should remark that there is one subtle difference in our definition of
weak improvement from that of Gustavsson and Sands. They defined a single
weak improvement relation as follows. M > N if some linear function f exists

such that for all contexts C[-] the following holds:
space(C[M]) =n == space(C[N]) < f(n)

The relation > is the union of all the weak improvement relations. However,

~

this relation > itself is not a weak improvement relation in our sense.

~

To discuss the connection between these properties and the properties
of global transformations, we first define the induced global transformation
M ~pgr N as follows: M ~>p N if some C[], M’ and N’ exist such that
M =C[M'], N = C[N'], and (M',N’) € R. Then we immediately obtain the
following theorem.

Theorem 5.2 If R is a weak or strong improvement relation, ~»g 1S space
efficient.
On the other hand, the relation > does not induce a space efficient trans-

formation. This is because there is no single linear function f such that
space(C[N]) < f(space(C[M])) for all M > N.

The theorem above is still not enough to use a local transformation in a
compiler. In a compiler we usually apply local transformations n times in one
phase of a compiler where n is proportional to the size of a program. Even
for such composition, a strong improvement relation induces a space efficient
transformation.

Theorem 5.3 If R is a strong improvement relation, ~»7%, is space efficient.

On the other hand, a weak improvement relation does not necessarily in-
duce a weakly space efficient transformation. Consider the following sequence
of transformations where R is a weak improvement relation with space(C[N]) <
kspace(C[M]) for all (M, N) € R.

Mo~pr My ~p My~ M3 ~pg ... ~p M,

The space requirement of M, can be calculated as follows:

space(Ms) < kspace(My)
space(Ms) < kspace(Ms) < k*space(M,)

space(M,,) < k" space(M)
12

Then it is clear that there is no single linear function f such that:
space(N) < f(space(M))

for M ~%, N. Even if we restrict the number of repetitions to |Mp|, k™ is not
a polynomial of |M|. Thus, it is not even weakly space efficient.

We therefore must consider stricter conditions on local transformations.
In the following definition a local transformation is permitted to add only a
constant amount of extra space.

Definition 5.4 We say that R is a semi-strong improvement relation if some
constant k exists such that:

space(C[M]) =n = space(C|N]) <n+k

for all (M, N) € R and all context C[-] producing a whole program for M and
N.

It can be shown that this class of local transformations induces weakly
space efficient transformations if the number of applications of the transfor-
mation is limited by the size of a source program. We write M +—p N if
M ~% N where n < |M].

Theorem 5.5 If R is a semi-strong improvement relation, M +—pr N is
weakly efficient.

Although this theorem relates a semi-strong improvement relation to weakly
efficient transformations, semi-strong improvement relations seem too restric-
tive. There are many useful transformations R that are not semi-strong im-
provement relations, but — g seem weakly space efficient. The following trans-
formation is an example.

Ar.let y=M in N = let y= M in \x.N

We have not shown formally that this transformation is weakly space efficient.
For such proof we think that we require further study on the connections
between global transformations and local transformations.

6 Discussion and future work

We have shown weak efficiency only for stack space for two semantics of a
simple functional language. It will not be very difficult to deal with execution
time or heap space. For example, the proof that the CPS transformation is
space efficient [8] can easily be modified to show that the CPS transformation
is weakly space efficient with respect to a simpler space semantics of the source
language that ignores the sizes of closures and stack frames.

13

We have shown no examples of local program transformations that are
weak improvement relations or semi-strong improvement relations. We are
planning to show that various optimizations formalized as local program trans-
formations have these kinds of properties. In this area, Gustavsson and Sands
have developed a theory of space improvement relations for call-by-need pro-
gramming languages and have shown that several local transformations are
weak improvements [7]. Their work will be also applicable to call-by-value
languages.

We think that the framework we have developed in this paper requires
further refinement. For example, although intuitively clear, it is not proved
that space safety, weak space efficiency and space efficiency ensure that the
space complexity of programs is preserved. Bakewell and Runciman discussed
these kinds of issues more formally in their study on the comparison of space
usage of lazy evaluators [2]. They modeled lazy evaluators by graph rewriting
systems. This kind of uniform formalization of semantics may help develop a
theory of safe program transformations.

There is an implementation strategy of ML that is not space efficient, but
is space safe. That is the implementation strategy that uses types as param-
eters at runtime [10,13]. This is because the extra work and space necessary
for type parameters cannot be bounded by any constant. Furthermore, this
implementation strategy is not even weakly space efficient, because the types
appearing in the typing derivation of a program may have a size exponen-
tial to the size of the program. However, if we take the sum of the size of
a program and the maximum size of types appearing in typing derivation of
the program as the size of the program, this implementation strategy can be
considered weakly space efficient. By choosing the definition of the size of a
program in this way we can control the class of transformations that can be
used in compilers of the language.

Acknowledgement

This work is partially supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Encouragement of Young Scientists of Japan
No. 11780216, 1999. We would like to thank anonymous reviewers for their
many helpful comments and suggestions.

References

[1] Appel, A. W., “Compiling with Continuation,” Cambridge University Press,
1992.

[2] Bakewell, A. and C. Runciman, A model for comparing the space usage of
lazy evaluators, in: 2nd International Conference on Principles and Practice
of Declarative Programming (PPDP 2000), 2000.

14

[3] Blelloch, G. E. and J. Greiner, A provably time and space efficient
implementation of NESL, in: Proc. of ACM SIGPLAN International Conference
on Functional Programming, 1996, pp. 213-225.

[4] Danvy, O. and A. Filinski, Representing control: a study of the CPS
transformation, Mathematical Structures in Computer Science 2 (1992), pp. 361
- 391.

[5] Flanagan, C., A. Sabry, B. F. Duba and M. Felleisen, The essence of compiling
with continuations, in: Proc. of ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1993, pp. 237-247.

[6] Greiner, J. and G. E. Blelloch, A provably time-efficient parallel implementation
of full speculation, in: Proc. of ACM Symposium on Principles of Programming
Languages, 1996, pp. 309 — 321.

[7] Gustavsson, J. and D. Sands, A foundation for space-safe transformations of
call-by-need programs, in: Proc. of the Third International Workshop on Higher
Order Operational Techniques in Semantics (HOOTS99), ENTCS 26, 1999.

[8] Minamide, Y., A space-profiling semantics of call-by-value lambda calculus and
the CPS transformation, in: Proc. of the Third International Workshop on
Higher Order Operational Techniques in Semantics (HOOTS99), ENTCS 26,
1999.

[9] Minamide, Y. and J. Garrigue, On the runtime complexity of type-directed
unboxing, in: Proc. of ACM SIGPLAN International Conference on Functional
Programming, 1998, pp. 1-12.

[10] Ohori, A. and N. Yoshida, Type inference with rank 1 polymorphism for
type-directed compilation of ML, in: Proc. of ACM SIGPLAN International
Conference on Functional Programming, 1999, pp. 160— 171.

[11] Santos, A. L., “Compilation by Transformation in Non-strict Functional
Languages,” Ph.D. thesis, Department of Computing Science, University of
Glasgow (1995).

[12] Shao, Z., Flexible representation analysis, in: Proc. of ACM SIGPLAN
International Conference on Functional Programming, 1997, pp. 85 — 98.

[13] Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper and P. Lee, TIL:
A type-directed optimizing compiler for ML, in: Proc. of ACM SIGPLAN
Conference on Programming Language Design and Implementation, 1996, pp.
181-192.

15

