
y

Space-Profiling Semantics of the Call-by-Value
Lambda Calculus and the CPS Transformation

Yasuhiko Minamide

Institute of Information Sciences and Electronics
University of Tsukuba

Tsukuba 305-8573, Japan

Abstract

We show that the CPS transformation from the call-by-value lambda calculus to a
CPS language preserves space required for execution of a program within a constant
factor. For the call-by-value lambda calculus we adopt a space-profiling semantics
based on the profiling semantics of NESL by Blelloch and Greiner. However, we
have noticed their semantics has some inconsistency between the treatments of stack
space and heap space. This requires us to revise the semantics so that the semantics
treats space in more consistent manner in order to obtain our result.

1 Introduction

In the studies of program transformations it is indispensable to prove their cor-
rectness. However, so far it is not so common to discuss effects on performance
formally; it is usually discussed only by benchmarks. This sometimes results
in undesirable situation. Several researchers have noticed that some program
transformations are not safe with respect to space [1,3,10]. This clarifies that
space safety of program transformations should be discussed formally.

To discuss space safety formally, we first need a space-profiling seman-
tics which formalizes how much memory a program requires for its execution.
However, it is not so easy to formulate such a semantics. Blelloch and Greiner
proposed a space-profiling semantics for the parallel programming language
NESL and discussed the space efficiency of an implementation of NESL [2]. As
far as we know, this is the only work that formalized a space-profiling semantics
of a programming language and discussed this topic formally. Their profiling
semantics is an extension of the standard natural semantics of the call-by-
value lambda calculus and seems suitable to study space safety of program
transformations on call-by-value functional languages. However, the problem
of formalizing space-profiling semantics is not completely solved. Their se-
mantics is quite involved and it is not so clear that it models space required
for execution of a program properly.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Minamide

In this paper we show that the CPS transformation from the call-by-value
lambda calculus to a CPS language preserves space within a constant fac-
tor by adopting a space-profiling semantics of Blelloch and Greiner for the
lambda calculus. This result itself is significant since it confirms what we ex-
pected on space for the CPS transformation. Furthermore, this implies that
the call-by-value lambda calculus has an implementation based on the CPS
transformation where space is preserved and thus the space-profiling semantics
of the lambda calculus models space required for execution of programs prop-
erly. However, during this study we have noticed that the semantics given by
Blelloch and Greiner has some inconsistency between the treatments of stack
space and heap space. This requires us to revise the semantics so that the
semantics treats space in more consistent manner in order to obtain our result.

The CPS language we consider is basically a simplified version of the lan-
guage used in the study of SML/NJ [1]. The language does not require stack
to model execution of programs. This simplifies its space-profiling semantics.
Furthermore, since the language is close to low level implementation we are
relatively sure that the space-profiling semantics we define for the language
models actual implementation. This is our motivation that we used the CPS
language as the target language into which the call-by-value lambda calculus
is translated.

This paper is organized as follows. We start by introducing the concept of
profiling semantics and discussing what properties a program transformation
should satisfy. As the property we discuss mainly in this paper we define space
efficient program transformations. In Section 3 we introduce the profiling se-
mantics of the call-by-value lambda calculus given by Blelloch and Greiner and
discuss inconsistency between the treatments of stack space and heap space.
In Section 4 the CPS language and its space-profiling semantics is introduced.
In Section 5 we show that the CPS transformation is space efficient. We also
consider some variations of profiling semantics of the call-by-value lambda
calculus and the CPS language in Section 6. Finally we review related works
and give directions for future work.

2 Profiling semantics, space efficiency, and space safety

In this section we review what is profiling semantics and what properties
program transformations should satisfy on space. For simple functional lan-
guages the semantics can be defined as a function eval(M) returning the result
of evaluation if it terminates:

eval(M) = v

if the evaluation terminates and the result is the value v. Otherwise, eval(M)
is undefined. This semantics formalizes what should be the result of the
computation of M , but does not give any information on how much time or
space the evaluation requires.

2

Minamide

Profiling semantics is introduced to discuss such properties formally. As
an extension of the standard semantics, profiling semantics can be given as a
function eval(M) below.

eval(M) = (v, n)

This function gives the result of computation v and information n on resource
requirement. In this paper we focus on space as the resource. More specially,
we discuss not the space allocated totally, but the space required for execution
in the presence of garbage collection. As the values of n we use non-negative
integers that represent the size of space required for execution.

The next step is to formalize what property a program transformation
should satisfy on space. Let us consider that a program M is translated to
a program M ′ by a program transformation and the profiling semantics for
the language after the transformation is given by eval′(M ′). We say that a
program transformation is space efficient if the following property holds.

There exist constants k1 and k2 such that for any program M

eval(M) = (v, n) implies eval′(M ′) = (v′, n′) for some n′ ≤ k1n + k2.

In this definition we admit constants k1 and k2 because they seem dependent
on the details of definition and not essential. It is clear that this condition
ensures that the program transformation does not raise the space complexity
of a program. This is the property shown by Blelloch and Greiner for an
implementation of NESL [2] and we show this property for the CPS transfor-
mation.

However, this property might be too strong for some program transforma-
tions used in compilers. Appel discussed that a transformation is space safe
if it does not raise the space complexity of programs [1]. To formalize this
idea we have to consider programs with an input; we consider programs with
one free variable and use the free variable for input. One way of formalizing
space-safety is as follows:

For any program M with a free variable x, there exist constants k1 and k2

such that for any integer i the following holds:

eval(M [i/x]) = (v, n) implies eval′(M ′[i/x]) = (v′, n′)

for some n′ ≤ k1n + k2

The key difference from space-efficiency is that the constants k1 and k2 are
program-dependent. Minamide and Garrigue showed that this property with
respet to time complexity for a type-directed unboxing transformation, which
is not efficient in terms of the definition above [10]. We should remark that
if we ignore inputs, the statement of space-safety gets trivial. The following
claim is trivial on requirement of space.

For any program M , there exist program-dependent constants k1 and k2 such

3

Minamide

that the following holds:

eval(M) = (v, n) implies eval′(M ′) = (v′, n′) for some n′ ≤ k1n + k2

It might be sufficient that a program transformation used in compilers is
space safe. However, we think that it is interesting to show that a program
transformation is space efficient, since it gives us a uniform constant indepen-
dent of programs.

3 Lambda calculus and space-profiling semantics

In this section we introduce a space-profiling semantics of the call-by-value
λ-calculus based on the space-profiling semantics of NESL by Blelloch and
Greiner [2]. Their semantics does not explicitly take account of garbage col-
lection, but the maximum size of reachable space during evaluation. We have
noticed that this semantics has some inconsistency between the treatments of
heap space and stack space: it takes account of the size of each closure, but
ignores the size of each stack frame. This motivates us to revise the semantics
so that the semantics treats space in more consistent manner. As we will
see later, this revision is necessary to prove that the CPS transformation is
space efficient. In this section we first describe the semantics by Blelloch and
Greiner. Then we explain the problem and revise the semantics to make it
more consistent.

We consider the following untyped call-by-value λ-calculus with a constant
c.

M ::= x | c | λx.M | M1M2

The profiling operational semantics is given as an extension of the standard
natural semantics. A value v is either a constant c or a location l. We use store
σ mapping locations to store values sv to express sharing of values. A store
value sv models a value allocated on heap memory and for this calculus it is
only a closure. A closure 〈cl ρ, x,M〉 consists of an environment ρ mapping
variables to values, a variable, and an expression.

v ::= c | l

sv ::= 〈cl ρ, x,M〉
We denote the set of the free variables of M by FV (M) and for closures we
write FV (〈cl ρ, x,M〉) for FV (M) \ {x}.

The operational semantics is defined as a natural semantics with judgments
of the following form

ρ, σ,R � M �−→ v, σ; s

where ρ is environment, σ is store, R is a root set, and s is the maximum size
of reachable space. A root set is a set of locations which is necessary after this
computation.

4

Minamide

Before giving the rules of the natural semantics we have to define reachable
locations and the space of a set of locations. The set of locations locs(l, σ)
reachable from a location l in σ is defined as follows 1 .

locs(l, σ) = {l} ∪ locs(σ(l), σ)

locs(〈cl ρ, x,M〉, σ) =
⋃

l∈L locs(l, σ) where L = ρ(FV (〈cl ρ, x,M〉))�Loc

where S�Loc is the set of locations included in a set of values S.

The size of space space(R, σ) reachable from a set of locations R is defined
as follows:

space(R, σ) = Σ
l∈locs (R,σ)

size(σ(l))

size(〈cl ρ, x,M〉) = |FV (〈cl ρ, x,M〉)| + 1

The size of a closure is proportional to the size of the environment required for
M . This models the implementation of environments based on a flat record.

The following are the rules of the operational semantics, which are basically
obtained by simplifying those given by Blelloch and Greiner.

(con)

ρ, σ,R � c �−→ c, σ; space(R, σ)

(var)

ρ, σ,R � x �−→ ρ(x), σ; space(R ∪ {ρ(x)}�Loc, σ)

(abs)

ρ, σ,R � λx.M �−→ l, σ′; space(R ∪ {l}, σ′)

where l is a fresh location and σ′ = σ[〈cl ρ, x,M〉/l]
(app)

ρ, σ,R ∪ ρ(FV (M2)) � M1 �−→ l, σ1; s1

ρ, σ1, R ∪ {l} � M2 �−→ v2, σ2; s2

ρ′[v2/x], σ2, R � M3 �−→ v, σ3; s3 σ2(l) = 〈cl ρ′, x, M3〉
ρ, σ,R � M1M2 �−→ v, σ3; max(s1 + 1, s2 + 1, s3)

The size of reachable space is only calculated in the leaves of a derivation. In
the rules (con), (var), and (abs) we have to take the root set R into account
to determine the reachable space. Thus in (con) the size of reachable space is
determined by space(R, σ). In the rule of application we calculate the maxi-
mum size of reachable space by taking maximum of those of the subderivation.
We calculate the maximum of s1 + 1, s2 + 1, and s3 instead of s1, s2, and s3

where adding 1 to s1 and s2 is explained as the space for stack. However, the
evaluation of M3 corresponds to a tail call. Thus we do not add 1 to s3.

To define an evaluation function based on this natural semantics, we first
define the observable values and the function oval(v) coercing values into

1 We assume that there is no cycle in a store. That is ensured for this operational semantics.

5

Minamide

observable values as follows:

ov ::= c | cls

oval(v) =

⎧⎨
⎩

c if v is a constant c

cls if v is a location

The space-profiling semantics based on the natural semantics is defined as
follows:

evalBG
λ (M) = (ov, s) if and only if ∅, ∅, ∅ � M �−→ v, σ; s and ov = oval(v).

This seems reasonable definition, but if we think the evaluation more carefully,
we will find some inconsistency in the rules of the natural semantics. The
semantics takes account of the size of each closure, but it ignores the size of
each stack frame. Let us consider the evaluation of application M1M2. During
the evaluation of M1, we have to preserve the values of FV (M2) in the stack
frame, the size of which is not constant. However, this size is ignored in the
rule of application.

We revise the rule of application so that the size of stack frames is treated
in more consistent manner. The rule is revised as follows:

ρ, σ,R ∪ ρ(FV (M2)) � M1 �−→ l, σ1; s1

ρ, σ1, R ∪ {l} � M2 �−→ v2, σ2; s2

ρ′[v2/x], σ2, R � M3 �−→ v, σ3; s3 σ2(l) = 〈cl ρ′, x, M3〉
ρ, σ,R � M1M2 �−→ v, σ3; max(s1 + |FV (M2)| + 1, s2 + 1, s3)

We adopt this rule hereafter and refer the profiling semantics based on this rule
evalλ(M). As we will see later, without this revision the CPS transformation
is not space efficient.

These semantics evalBG
λ (M) and evalλ(M) are not equivalent in terms of

space efficiency of program transformations: there is no constants k1 and k2

such that

evalBG
λ (M) = (ov, n) implies evalλ(M) = (ov, n′) for some n′ ≤ k1n + k2.

This is verified by constructing expressions Zn indexed by a natural number
n where the space required for the execution of Zn is proportional to n for
evalBG

λ (M) and n2 for evalλ(M). The construction is given as follows:

Xn = (λx1 . . . xn.c)z1 . . . zn

Yn = (λy1 . . . yn.c)Xn . . .Xn

Zn = (λz1 . . . zn.Yn)c . . . c

where λx1 . . . xn.M is abbreviation of (λx1.(λx2.(. . . (λxn.M)))). The intuition
is that the evaluation of Zn requires n stack frames of size n and thus n2 space
is necessary for evalλ(M), but only n space is necessary for evalBG

λ (M) since
the size of each stack frame is ignored.

6

Minamide

4 CPS language and space-profiling semantics

As we saw in the previous section, it is delicate to formalize the space-profiling
semantics even for the simple call-by-value λ-calculus. Thus in this section
we consider a space-profiling semantics of a simpler CPS language where a
program is expressed in continuation passing style. The language is basi-
cally a simplified version of the language used in the SML/NJ compiler [1].
The profiling semantics is defined based on the abstract machine proposed
by Flanagan et al. [6] and does not require stack to model execution. That
simplifies its space-profiling semantics.

The syntax of the CPS language is defined as follows:

V ::= x | c

M ::= x〈V1, . . . , Vn〉 | let x = λx1 . . . xn.M1 in M2

A value expression V is either a variable x or a constant c. An expression
M is either an application x〈V1, . . . , Vn〉 with n-arguments V1, . . . , Vn or a let-
expression introducing a lambda abstraction. For readability we use k, k1, . . .
as variables of the CPS language for continuation.

We define the operational semantics based on the abstract machine pro-
posed by Flanagan et al. [6] by extending it with locations and stores. The
definition of store values, values, stores, and environments is similar to those
for the semantics of the lambda calculus.

sv ::= 〈cl ρ, x1 . . . xn, M〉
v ::= l | c | stop

The value stop is used to represent the initial continuation. We sometimes use
an environment ρ as a function from value expressions to values by extending
ρ with ρ(c) = c.

The operational semantics is defined as transition of a state Q consisting
of a store, an environment, and an expression: 〈σ, ρ,M〉. The rules of the
transition 〈σ, ρ,M〉 �−→ 〈σ′, ρ′, M ′〉 are defined as follows:

(app)

〈σ, ρ, x〈V1, . . . , Vn〉〉 �−→ 〈σ, ρ′[ρ(V1), . . . , ρ(Vn)/z1, . . . , zn], M〉
where σ(ρ(x)) = 〈cl ρ′, z1 . . . zn, M〉.

(abs)

〈σ, ρ, let x = λx1 . . . xj.M1 in M2〉 �−→
〈σ[〈cl ρ, x1 . . . xj , M1〉/l], ρ[l/x],M2〉

where l is a fresh location.

As for the profiling operational semantics of the lambda calculus, we define
the reachable locations and its space. The set of locations locs(l, σ) reachable

7

Minamide

from l in σ is defined as follows.

locs(l, σ) = {l} ∪ locs(σ(l), σ)

locs(〈cl ρ, x1 . . . xn, M〉, σ) =
⋃

l∈L locs(l, σ)

where L = ρ(FV (M) \ {x1, . . . , xn})�Loc.

The size of space reachable from a set of locations R is defined as follows:

space(R, σ) = Σ
l∈locs (R,σ)

size(σ(l))

size(〈cl ρ, x1 . . . xn, M〉) = |FV (M) \ {x1, . . . , xn}| + 1

The set of locations and the size of space reachable from a state 〈σ, ρ,M〉
defined as follows:

locs(〈σ, ρ,M〉) =
⋃

l∈L locs(l, σ) where L = ρ(FV (M))�Loc

space(〈σ, ρ,M〉) = space(locs(〈σ, ρ,M〉), σ)

We write Q1 �−→∗
s Qn if Q1 �−→∗ Qn and s = max1≤i≤n(space(Qi)). Let M

be a program with a variable k for the initial continuation. Then we define
the profiling semantics of M as follows:

evalcps(M) = (ov, s)

if and only if

〈∅, [stop/k], M〉 �−→∗
s 〈σ, ρ, k′〈V 〉〉

and oval(ρ(V)) = ov and ρ(k′) = stop.

5 CPS transformation is space efficient

In this section we will consider a CPS transformation from the lambda calculus
to the CPS language and show that the transformation is space efficient. The
proof simultaneously shows that the transformation preserves the observable
behavior of programs and is space efficient.

We define the CPS transformation as a deductive system with judgments
of the form of k � M � M ′ which means M is transformed to M ′ by using
k as a variable for continuation. The rules of the transformation are given as
follows:

k � x� k〈x〉
k � c� k〈c〉
k � M �M ′

k � λx.M � let f = λxk.M ′ in k〈f〉
k1 � M1 �M ′

1 k2 � M2 �M ′
2

k � M1M2 � let k1 = λf.let k2 = λa.f〈ak〉 in M ′
2 in M ′

1

We use the CPS language as the target language of the transformation in-
stead of the lambda calculus and for readability we introduce fresh variables

8

Minamide

for continuation in the transformation of applications. This is basically the
standard CPS transformation by Fischer and Plotkin [5,13].

The following lemma determines the set of the free variables of a CPS-
transformed expression.

Lemma 5.1 If k � M �M ′, then FV (M ′) = FV (M) ∪ {k}.
In the transformation of application, the continuation for M ′

1 is the follow-
ing expression.

λf.let k2 = λa.f〈ak〉 in M ′
2

The set of free variables of the expression is (FV (M ′
2)\{k2})∪{k} = FV (M2)∪

{k}. Thus the size of the closure for this expression is not a constant, but
|FV (M2)| + 2. This is the reason why we need the revised space-profiling
semantics of the lambda calculus to show that the CPS transformation is
space efficient.

The following theorem claims that the CPS transformation is space efficient
for the constant K = 3.

Theorem 5.2 Let k � M � M ′. If evalλ(M) = (ov, s), then evalcps(M
′) =

(ov, s′) and s′ ≤ Ks.

The constant K is determined as follows. Let us consider the evaluation
of M1M2 which is translated into the following expression.

let k1 = λf.let k2 = λa.f〈ak〉 in M ′
2 in M ′

1

When we evaluate M ′
2, the current continuation is 〈cl ρ, a, f〈ak〉〉 for some

environment ρ. The size of this closure is 3 since the set of the free variables is
{f, k}. This size should correspond to the size of the stack frame to evaluate
M2 which is 1 in the rule for application in the definition of evalλ(M). Thus
we adopt 3 for K.

In order to prove this theorem we have to generalize the claim of the
theorem. First, in order to show that the CPS transformation preserves the
observable behavior of programs, we define the relations ≈ between values,
store values, environments, and stores of the lambda calculus and the CPS
language as follows:

c ≈ c

l ≈ l

〈cl ρ, x,M〉 ≈ 〈cl ρ′, xk, M ′〉 if ρ ≈ ρ′ and k � M �M ′

ρ ≈ ρ′ if ρ(x) ≈ ρ′(x) for all x ∈ Dom(ρ)

σ ≈ σ′ if σ(l) ≈ σ′(l) for all l ∈ Dom(σ)

Since a store σ′ of the CPS language includes locations pointing closures for
continuation, we ignore the locations not included in the domain of σ of the

9

Minamide

lambda calculus in this definition.

The following lemma guarantees that for the related stores the set of reach-
able locations and the size of reachable space coincide.

Lemma 5.3 Let σ ≈ σ′ and R be a set of locations with R ⊆ Dom(σ). Then
locs(R, σ) = locs(R, σ′) and space(R, σ) = space(R, σ′).

Secondly, we have to distinguish locations of the CPS language for contin-
uation from those corresponding closures of the lambda calculus. Let σ and
σ′ be the stores of the lambda calculus and the CPS language respectively.
The locations corresponding to continuation klocs(vk, σ, σ′) and the locations
corresponding to heap hlocs(vk, σ, σ′) are defined as follows:

klocs(vk, σ, σ′) = locs(vk, σ
′) \ Dom(σ)

hlocs(vk, σ, σ′) = locs(vk, σ
′) ∩ Dom(σ)

Then the size of space corresponding to continuation kspace(vk, σ, σ′) is defined
as follows:

kspace(vk, σ, σ′) = space(klocs(vk, σ, σ′), σ′)

The main theorem is generalized to the following lemma. The proof of the
lemma appears in the appendix. The theorem is obtained by considering the
empty stores for σ and σ′, the empty environments for ρ and ρ′, the empty
set for R, and the initial continuation stop for vk.

Lemma 5.4 Let k � M � M ′, σ ≈ σ′, ρ ≈ ρ′, and hlocs(vk, σ, σ′) =
locs(R, σ).
If ρ, σ,R � M �−→ v, σ0; s, then 〈σ′, ρ′[vk/k], M ′〉 →∗

s′ 〈σ′
0, ρ

′′[vk/k], k〈V 〉〉 and
σ0 ≈ σ′

0 and v ≈ ρ′′(V) and s′ ≤ Ks + kspace(vk, σ, σ′).

6 Variations of profiling semantics

In this section we consider some variations of profiling semantics of the call-
by-value lambda calculus and the CPS language.

In the profiling semantics of the λ-calculus, we have not considered much
about constant factor on the stack space. When we evaluate M2 of application
M1M2, it is actually considered that the space of size 2 is necessary at least for
the value l of M1 and the return address. Then the rule is revised as follows:

ρ, σ,R ∪ ρ(FV (M2)) � M1 �−→ l, σ1; s1

ρ, σ1, R ∪ {l} � M2 �−→ v2, σ2; s2

ρ′[v2/x], σ2, R � M3 �−→ v, σ3; s3 σ2(l) = 〈cl ρ′, x, M3〉
ρ, σ,R � M1M2 �−→ v, σ3; max(s1 + |FV (M2)| + 1, s2 + 2, s3)

If we adopt this rule, the constant K that is used to show that the CPS trans-
formation is space efficient can be reduced to 2. In this sense it is considered
that K = 3 is overestimated. However, the concrete value of this constant K
will depend on the details of implementations anyway.

10

Minamide

In this paper we have taken an approach to counting the size of closures
and stack frames to make the semantics of the lambda calculus consistent.
However, it is also possible to ignore the size of both closures and stack frames.
Even if we take this approach, we believe that the CPS transformation is space
efficient. However, this approach will make some transformation which is not
space efficient if we take the size of closures and stack frames into account space
efficient. That is against our intuition and we consider that this approach is
undesirable.

In the space-profiling semantics of the CPS language, we have taken ac-
count of only the size of reachable locations as the size of a state and ignored
the size of the environment ρ of the state. If we consider the size of the envi-
ronment, the definition of the space of a state (ρ, σ,M) is revised as follows:

space ′(〈ρ, σ,M〉) = |FV (M)| + space(locs(〈ρ, σ,M〉))
Here, we add |FV (M)| instead of |Dom(ρ)| to discard the space for the values
that are not necessary to evaluate M . This definition space ′(Q) is also a
reasonable definition and it is not so clear which definition we should take.
The two semantics are not equivalent in the sense of space efficiency. However,
if we restrict programs to those obtained by the CPS transformation, two
semantics are equivalent. Let eval′cps(M) be the profiling semantics defined
based on this definition. If k � M �M ′, the following holds.

If evalcps(M
′) = (v, n) and eval′cps(M

′) = (v, n′), then n′ ≤ 2n + 3.

This means the two profiling semantics are equivalent in the sense of space
efficiency for the programs obtained by the CPS transformation.

7 Related work

We have concentrated on issues of space in this paper, but it is also impor-
tant to discuss execution time formally. A semantics profiling time is relatively
easy to formulate and several researchers have studied effect of program trans-
formations on execution time [14,7,2]. Even for time some advanced program
transformation was shown that it may raise time complexity of a program. Mi-
namide and Garrigue showed that the type-directed unboxing transformation
proposed by Leroy [9] has this problem. They proposed a refinement of this
transformation and proved that their refinement preserves time complexity by
the method of logical relations [10].

Several researchers have noticed that some program transformations are
not safe with respect to space and proposed refinements of the transformations
to avoid that problem [15,10]. Shao and Appel proposed a closure conversion
with a sophisticated environment representation that is space safe [15]. Mi-
namide and Garrigue expected that their refinement of unboxing transforma-
tion preserves space complexity with respect to heap space as well as time
complexity [10]. However, no proof is given in both studies.

Blelloch and Greiner proposed two profiling semantics of NESL: one based

11

Minamide

on natural semantics and the other based on an abstract machine [2]. They
showed that the implementation based on the latter semantics is time and
space efficient with respect to the former semantics. However, as we discussed
in this paper the treatment of stack space and heap space on both semantics
seems inconsistent and different from ours. In another recent effort to address
space-safety formally, Gustavsson and Sands has developed a theory of a space
improvement relation for a call-by-need programming languages and showed
space safety of inlining of affine-linear bindings [8].

Morrisett et al. proposed an operational semantics where various methods
of garbage collection can be discussed formally [11,12]. In this paper we have
ignored details of garbage collection and focused on the size of reachable space
as Blelloch and Greiner did. It is desirable to show the connection of the size
of reachable space and the space required for execution of a program formally.

8 Future work

We have considered the standard CPS transformation which introduces ad-
ministrative redexes [13]. However, it might be more natural to consider an
advanced CPS transformation as implementation of the call-by-value lambda
calculus, where administrative redexes are eliminated at time of the CPS
transformation. Thus we think that it is important to show such a CPS
transformation is also space efficient. For such a CPS transformation, it is
not straightforward to preserve tail calls [4]. By showing that such a CPS
transformation is space efficient, we can indirectly show that tail calls are
preserved.

The CPS language we considered is close to low level implementation.
However, actual compilers still use other program transformations such as
closure conversion to obtain executable code. To ensure that the profiling
semantics of the call-by-value lambda calculus models execution properly we
should prove that such transformations are also space efficient.

In this paper we have considered space efficiency of program transfor-
mations. However, there will be program transformations used in compilers
which are not space efficient, but only space safe. It will be interesting to
clarify which program transformations are not space efficient, but space safe.

Acknowledgement

We would like to thank Manuel Chakravarty and the anonymous reviewers for
their many helpful comments. This work is partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement
of Young Scientists of Japan, No. 11780216, 1999.

12

Minamide

References

[1] A. W. Appel. Compiling with Continuation. Cambridge University Press, 1992.

[2] G. E. Blelloch and J. Greiner. A provably time and space efficient
implementation of NESL. In Proc. of ACM SIGPLAN International Conference
on Functional Programming, pages 213–225, 1996.

[3] D. R. Chase. Safety consideration for storage allocation optimization. In
Proc. of ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–10, 1988.

[4] O. Danvy and A. Filinski. Representing control: a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361 – 391,
1992.

[5] M. Fischer. Lambda calculus schemata. In Proc. of the ACM Conference on
Proving Assertions About Programs, SIGPLAN Notices, 7(1), 1972.

[6] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling
with continuations. In Proc. of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 237–247, 1993.

[7] J. Greiner and G. E. Blelloch. A provably time-efficient parallel implementation
of full speculation. In Proc. of ACM Symposium on Principles of Programming
Languages, pages 309 – 321, 1996.

[8] J. Gustavsson and D. Sands. A foundation for space-safe transformations of
call-by-need programs. In Proc. of the Third International Workshop on Higher
Order Operational Techniques in Semantics (HOOTS99), 1999.

[9] X. Leroy. Unboxed objects and polymorphic typing. In Proc. of ACM
Symposium on Principles of Programming Languages, pages 177 – 188, 1992.

[10] Y. Minamide and J. Garrigue. On the runtime complexity of type-directed
unboxing. In Proc. of ACM SIGPLAN International Conference on Functional
Programming, pages 1–12, 1998.

[11] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory
management. In Proc. of ACM Symposium on Functional Programming
Languages and Computer Architecture, pages 66–77, 1995.

[12] G. Morrisett and R. Harper. Semantics of memory management for
polymorphic languages. Technical report, School of Computer Science, Carnegie
Mellon University, 1996. CMU-CS-96-176.

[13] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1(2):125–159, December 1975.

[14] D. Sands. Complexity analysis for a lazy higher-order language. In Proc. of
European Symposium on Programming, pages 361 – 375, 1990.

[15] Z. Shao and A. W. Appel. Space-efficient closure representations. In Proc. of
ACM Conference on Lisp and Functional Programming, pages 150–161, 1994.

13

Minamide

A Proof of Lemma 5.4.

Proof. By induction on the derivation of ρ, σ,R � M �−→ v, σ0; s. We only
present the cases for applications and abstractions. The cases for the constant
and variables are similar to the case of abstractions.

Case: ρ, σ,R � λx.M �−→ l, σ0; space(R∪{l}, σ0) where σ0 = σ[〈clρ, x,M〉/l].
The expression is translated to let f = λxk.M ′ in k〈f〉. Then,

〈ρ′[vk/k], σ′, let f = λxk.M ′ in k〈f〉〉 �−→
〈ρ′[vk/k][l/f], σ′[〈cl ρ′, xk, M ′〉/l], k〈f〉〉

where σ[〈cl ρ, x,M〉/l] ≈ σ′[〈cl ρ′, xk, M ′〉/l] and l ≈ l. Let us name the
states above as follows:

Q1 ≡ 〈ρ′[vk/k], σ′, let f = λxk.M ′ in k〈f〉〉
Q2 ≡ 〈ρ′[vk/k][l/f], σ′[〈cl ρ′, xk, M ′〉/l], k〈f〉〉

We can calculate locs(Q2) as follows:

locs(Q2) = klocs(vk, σ, σ′) ∪ hlocs(vk, σ, σ′) ∪ locs(l, σ′)

= klocs(vk, σ, σ′) ∪ (locs(R, σ) ∪ locs(l, σ′))

Hence

space(Q2) ≤ s + kspace(vk, σ, σ′)

This completes the proof of this case since space(Q1) ≤ space(Q2).

Case: ρ, σ,R � M1M2 �−→ v, σ0; s is derived from ρ, σ,R1 � M1 �−→ l, σ1; s1

and ρ, σ1, R2 � M2 �−→ v2, σ2; s2 and ρ3[v2/x], σ2, R � M3 �−→ v, σ0; s3

where σ1(l) = 〈cl ρ3, x, M3〉 and s = max(s1 + |FV (M2)| + 1, s2 + 1, s3).
The expression is translated to the following expression

let k1 = λf.let k2 = λa.f〈ak〉 in M ′
2 in M ′

1

where k1 � M1 �M ′
1 and k2 � M2 �M ′

2. Let ρ′
0 be ρ′[vk/k]. We have the

following transition.

〈ρ′
0, σ, let k1 = λf.let k2 = λa.f〈ak〉 in M ′

2 in M ′
1〉 �−→

〈ρ′
0[lk1/k1], σ

′[vk1/lk1], M
′
1〉

where vk1 = 〈cl ρ′
0, f, let k2 = λa.f〈ak〉 in M ′

2〉 and σ′
1 = σ′[vk1/lk1].

Let R1 = R ∪ ρ(FV (M2)). Then

hlocs(vk1 , σ, σ′
1) = hlocs(vk, σ, σ′) ∪ locs(ρ′

0(FV (M2)))

= R ∪ locs(ρ(FV (M2)), σ) = R1

and ρ ≈ ρ′
0. By induction hypothesis for M1,

〈ρ′
0[lk1/k1], σ

′
1, M

′
1〉 �−→∗

s′1
〈ρ′′[lk1/k1], σ

′′
1 , k〈x〉〉

and σ1 ≈ σ′′
1 and l ≈ ρ′′(x) and s′1 ≤ Ks1+kspace(vk1, σ, σ′

1). Thus ρ′′(x) = l
and σ′′

1(l) must be the form of 〈cl ρ′
3, xk, M ′

3〉 and k � M3 �M ′
3.

14

Minamide

Let v′
1 be ρ′′(x).

〈ρ′′[vk1/k1], σ
′′
1 , k〈x〉〉 �−→s′1 〈ρ′

0[l/f], σ′′
1 , let k2 = λa.f〈ak〉 in M ′

2〉
�−→ 〈ρ′

0[l/f][lk2/k2], σ
′′
1 [vk2/lk2], M

′
2〉

where vk2 = 〈cl ρ′[l/f], a, f〈ak〉〉.
Let R2 = R ∪ {l}. We have

hlocs(vk2, σ2, σ
′
2) = hlocs(vk, σ, σ′) ∪ {l} = R2

and ρ ≈ ρ′
0[l/f]. By induction hypothesis on M2,

〈ρ′
0[l/f][vk2/k2], σ

′′
1 [vk2/lk2], M

′
2〉 �−→∗

s′2
〈ρ′′

2[vk2/k2], σ
′
2, k〈y〉〉

and σ2 ≈ σ′
2 and v2 ≈ ρ′′

2(y) and s′2 ≤ Ks2 + kspace(vk2 , σ2, σ
′
2).

Let v′
2 be ρ′′

2(y).

〈ρ′′
2[vk2/k], σ′

2, k〈y〉〉 �−→ 〈ρ′
0[l/f][v′

2/a], σ′
2, f〈ak〉〉

�−→ 〈ρ′
3[v

′
2/x][vk/k], σ′

2, M
′
3〉

Since ρ3[v2/x] ≈ ρ′
3[v

′
2/x], by induction hypothesis on the evaluation of M3

〈ρ′
3[v

′
2/x][vk/k], σ′

2, M
′
3〉 �−→∗

s′3
〈ρ′′

3[vk/k], σ′
0, k〈z〉〉

and σ0 ≈ σ′
0 and v ≈ ρ′′

3(z) and s′3 ≤ s3 + klocs(vk, σ2, σ
′
2).

By summarizing, we have the following transition.

Q0 = 〈ρ′
0, σ, let k1 = λf.let k2 = λa.f〈ak〉 in M ′

2 in M ′
1〉

↓
Q′

0 = 〈ρ′
0[lk1/k1], σ

′[vk1/lk1], M
′
1〉

↓s′1∗
Q1 = 〈ρ′′[lk1/k1], σ

′′
1 , k〈x〉〉

↓
Q′

1 = 〈ρ′
0[l/f], σ′′

1 , let k2 = λa.f〈ak〉 in M ′
2〉

↓
〈ρ′

0[l/f][lk2/k2], σ
′′
1 [vk2/lk2], M

′
2〉

↓s′2∗
Q2 = 〈ρ′′

2[vk2/k2], σ
′
2, k〈y〉〉

↓
Q′

2 = 〈ρ′
0[l/f][v′

2/a], σ′
2, f〈ak〉〉

↓
〈ρ′

3[v2/a][vk/k], σ′
2, M

′
3〉

↓s′3∗
〈ρ′′

3[vk/k], σ′
0, k〈z〉〉

By checking reachable locations from the states above, we obtain the
following relations.

space(Q0) ≤ space(Q′
0) ≤ s′1

space(Q′
1) ≤ space(Q1) ≤ s′1

space(Q′
2) ≤ space(Q2) ≤ s′2
15

Minamide

Hence we obtain

〈σ′, ρ′[vk/k], M ′〉 →∗
s′ 〈σ′

0.ρ
′′[vk/k], k〈x〉〉

for s′ = max(s′1, s
′
2, s

′
3).

Then the following calculation completes the proof of this case.

s′1 ≤ Ks1 + kspace(lk1, σ, σ′[vk1/lk1])

= Ks1 + kspace(vk, σ, σ′) + |FV (M2)| + 2

≤ Ks + kspace(vk, σ, σ′)

s′2 ≤ Ks2 + kspace(lk2, σ1, σ
′′
1 [vk2/lk2])

= Ks2 + kspace(vk, σ, σ′) + 3

≤ Ks + kspace(vk, σ, σ′)

s′3 ≤ Ks3 + kspace(vk, σ2, σ
′
2)

≤ Ks + kspace(vk, σ, σ′)

�

16

