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ABSTRACT
We have verified several versions of the CPS transformation
in Isabelle/HOL. In our verification we adopted first-order
abstract syntax with variable names so that the formaliza-
tion is close to that of hand-written proofs and compilers.
To simplify treatment of fresh variables introduced by the
transformation, we introduced abstract syntax parameter-
ized with the type of variables. We also found that the
standard formalization of α-equivalence was cumbersome
for theorem provers and reformulated α-equivalence as a
syntax-directed deductive system. To simplify verification
of the CPS transformation on the language extended with
let-expressions, it was essential to impose that variables are
uniquely used in a program.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers,optimization; F.1.1 [Mathematical Logic and For-
mal Languages]: Mathematical Logic—mechanical theo-
rem proving

General Terms
Languages, Verification

Keywords
Program transformation, theorem proving, correctness proofs

1. INTRODUCTION
Recently developed compilers apply various sophisticated

program transformations to achieve high performance and
to implement various advanced features of programming lan-
guages. As transformations become more and more sophisti-
cated, their hand-written correctness proofs become less and
less reliable. Thus, it is desirable to verify the correctness
of program transformations with theorem provers.

We verified several versions of the CPS transformation
in Isabelle/HOL. The CPS transformation has been used
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in compilers of functional programming languages to make
explicit the control flow of a program and to implement
continuations as first-class objects [17, 2]. The transfor-
mation translates programs into a special form called the
continuation-passing style.

As a representation of lambda terms, we chose a first-order
abstract syntax with variable names for the following rea-
sons. It is simple and close to the representation of lambda
terms in hand-written proofs. Even if variable names are
used in abstract syntax, there is no need to rename them for
the definition of reduction semantics, because we only con-
sider the evaluation of closed programs and an expression
inside a lambda abstraction is not evaluated. Furthermore,
abstract syntax with variable names is very close to the in-
termediate languages used in compilers. Thus, verification
based on abstract syntax with variable names may help the
verification of actual compilers in future research.

We verified several versions of the CPS transformation,
those of Plotkin [16], Danvy and Filinski [4], and Danvy
and Nielsen [5]. Plotkin’s transformation is simple, but in-
troduces redundant redexes. The other two are optimized
transformations and it is more difficult to show their cor-
rectness. We wrote our proof scripts in the proof language
Isabelle/Isar [19]. By using Isabelle/Isar we could write
human-readable structured proofs. The proof scripts of our
verification can be obtained from http://www.score.is.

tsukuba.ac.jp/~minamide/cps/. There are several difficul-
ties in our verification related to variable names.

The first problem relates to fresh variables introduced by
the transformation. All the CPS transformations introduce
some fresh variables, which must be different from the vari-
ables occurring in an original term. This restriction must
be maintained explicitly: lemmas require explicit restric-
tions about variables. However, this makes it difficult to
prove them in Isabelle/HOL. To solve this problem, we in-
troduced an abstract syntax parameterized with the type of
variables. With this abstract syntax, it is possible to implic-
itly impose the restriction.

The second problem relates to the treatment of the α-
equivalence of lambda terms. Our verification of Danvy
and Nielsen’s and Danvy and Filinski’s transformations rely
on the α-equivalence of lambda terms. However, we found
that the standard formalization of α-equivalence was cum-
bersome for theorem provers. Thus, we reformulated α-
equivalence as a syntax-directed deductive system.

The last problem is encountered in verification of Danvy
and Nielsen’s transformation on the language extended with
let-expressions. For the verification of this transformation,



we imposed that let-bound variables are uniquely used in
a program. Without this restriction, formalization of this
transformation requires explicit renaming of let-bound vari-
ables and that makes verification difficult to conduct.

This paper is organized as follows. In Section 2 we intro-
duce the language we consider and review the CPS transfor-
mation. We also explain why we choose an abstract syntax
with variable names. In Section 3 we present the verification
of Plotkin’s transformation and introduce a parameterized
abstract syntax. In Section 4 we present the verification of
Danvy and Nielsen’s transformation. Our deductive system
of α-equivalence is discussed in this section. We also extend
our verification to the language with let-expressions. In Sec-
tion 5 we outline our formalization of Danvy and Filinksi’s
transformation. Finally we review related work and present
our conclusions.

2. LANGUAGE AND TRANSFORMATION
We describe the syntax and semantics of the language

we will consider in this paper and review Plotkin’s CPS
transformation. We also clarify why we chose an abstract
syntax with variable names instead of an abstract syntax
based on de Bruijn indexes.

The syntax of the language we consider in this paper is
defined as follows:

M ::= x | λx.M | MM

We consider a call-by-value operational semantics for this
language. The operational semantics of the language is de-
fined based on the following β-reduction rule.

(λx.M)V → M [V/x]

where V is a value, either a variable or an abstraction. We
consider only the evaluation of closed programs. Thus, for
evaluation of programs, the substitution M [V/x] is required
only for closed V . By considering this restriction, the substi-
tution M [N/x] is defined without considering the renaming
of bound variables as follows:

(λx.M)[N/y] =


λx.M (if x = y)
λx.(M [N/y]) (if x �= y)

This is well-defined without considering the α-equivalence
of lambda terms, and thus the operational semantics of
the language is also well-defined without the α-equivalence
of lambda terms. This makes it possible to formalize the
operational semantics based on abstract syntax with vari-
able names directly without problems of renaming. This is
the first reason why we chose abstract syntax with variable
names.

CPS transformations have been used in compilers of func-
tional programming languages to make explicit the control
flow of a program and to implement continuation as first-
class objects [17, 2]. The transformation translates pro-
grams into a special form called the continuation-passing
style. The following is Plotkin’s transformation [16]:

[[x]] = λk.kx
[[λx.M ]] = λk.k(λx.[[M ]])
[[MN ]] = λk.[[M ]](λm.[[N ]](λn.mnk))

where k, m and n are fresh variables. The translated pro-
gram is evaluated with the initial continuation λx.x. Plotkin

showed that M and [[M ]](λx.x) are evaluated to equivalent
values.

The transformation is defined by taking advantage of vari-
able names. If we adopt an abstract syntax based on de Bruijn
indexes [6], we encounter difficulties in formalizing the trans-
formation. Let us consider the following transformation of
x x by Plotkin’s CPS transformation.

[[x x]] = λk.(λk.kx)(λm.(λk.kx)(λn.mnk)))

The transformation of x does not depend on the contexts
where it appears. If we represent x by 0 of de Bruijn indexes,
the transformation is revised as follows:

[[0 0]] = λ(λ 0 2)(λ(λ 0 3)(λ 1 0 2))

where the transformation of 0 is context-sensitive: (λ 0 2)
or (λ 0 3). As a result, the CPS transformation of terms
represented by de Bruijn indexes is context-sensitive and
seems to be more difficult to manage. This is another reason
we chose an abstract syntax with variable names. We think
that de Bruijn indexes are not suitable for the formalization
of many program transformations because they are often
defined by taking advantage of variable names.

2.1 Language and Semantics in Isabelle/HOL
We review Isabelle/HOL and show how we formalized the

language and operational semantics based on abstract syn-
tax with variable names. Isabelle is a generic interactive
theorem prover that can be instantiated with several differ-
ent object logics [13] and Isabelle/HOL is an instantiation
of Isabelle to Church’s higher-order logic [12]. We refer to
Isabelle/HOL as Isabelle in the rest of this paper. The type
system of Isabelle is similar to that of ML and has ML-style
polymorphic types. Types follow the syntax of ML-types
except that the function arrow is =>.

As discussed earlier, we chose first-order abstract syn-
tax with variable names as the representation of lambda
terms. The abstract syntax of lambda terms is defined by
the datatype definition as follows:

datatype lt = Var nat

| Abs nat lt

| "$" lt lt (infixl 200)

where variable names are represented by natural numbers:
nat. The keyword infixl means that the operator $ can
be used in infix notation with priority 200. For example,
λx.λy.xy is represented by the following term in Isabelle.

Abs 0 (Abs 1 (Var 0 $ Var 1))

This representation of terms is almost the same as those of
intermediate languages of most compilers.

The observation in the previous section simplifies the for-
malization of substitution and reduction. Substitution is
defined as a primitive recursive function in Isabelle as fol-
lows:

primrec

(Var y)[V/x] = (if y = x then V else Var y)

(Abs y M)[V/x] = (if (y = x) then Abs y M

else Abs y (M[V/x]))

(M $ N)[V/x] = M[V/x] $ N[V/x]

Since the substitution M[V/x] is applied only to a closed
term V, there is no need to rename variable y in the definition
for abstraction. With substitution the reduction relation is
defined as an inductively-defined relation.



consts CPS :: lt => lt ("([ ])" [250] 250)

primrec

([Var x]) = Abs 0 (Var 0 $ Var x)

([Abs x M]) = Abs 0 (Var 0 $ Abs x ([M]))
([M $ N]) = Abs 0 (([M]) $ (Abs 1 (([N]) $ (Abs 2 (Var 1 $ Var 2 $ Var 0)))))

Figure 1: Plotkin’s CPS transformation: naive formalization

consts CPS :: ’a lt => ’a variable lt ("([ ])" [250] 250)

primrec

([Var x]) = Abs k (Var k $ Var (x~))

([Abs x M]) = Abs k (Var k $ (Abs (x~) ([M]) ))

([M $ N]) = Abs k (([M]) $ (Abs m (([N]) $ (Abs n (Var m $ Var n $ Var k)))))

Figure 2: Plotkin’s CPS transformation: revised formalization
.

consts

eval :: (lt * lt) set

inductive eval

intros

[[isValue V; closed V]] ⇒
((Abs x M) $ V, M[V/x])∈eval

[[isValue V; (M,M’)∈eval]] ⇒ (V $ M, V $ M’)∈eval
(M,M’)∈eval ⇒ (M $ N, M’ $ N)∈eval

This definition introduces a relation eval between lt. To
ensure that substitution is applied only if V is closed, the rule
for the β-axiom is restricted to the case where V is closed.

3. PLOTKIN’S CPS TRANSFORMATION
We outline our verification of Plotkin’s CPS transforma-

tion in this section. The key to our verification is to intro-
duce abstract syntax parameterized with the type of vari-
ables. The parameterized abstract syntax is implemented as
a polymorphic datatype.

Plotkin’s transformation can be formalized as a primitive
recursive function in Isabelle if we fix the representation of
the variables k, m and n to some natural numbers. Fig-
ure 1 shows a formalization of the transformation where k,
m and n are represented by the natural numbers 0, 1 and 2,
respectively. The notation ([M]) is introduced for (CPS M) 1.
We first attempted to verify the correctness of the trans-
formation based on this formalization, but found that the
formalization was cumbersome for verification. The trans-
formation is valid only if the variables represented by 0, 1
and 2 do not occur in a program. This condition must be
maintained in every lemma, which makes it difficult to prove
lemmas, especially with automated theorem-proving tactics.

This problem occurs because the distinction between the
variables in an original term and those introduced by the
transformation is not clear from the formalization. To over-
come this problem we introduce an abstract syntax param-
eterized with the set of variables. The abstract syntax is
implemented by the following polymorphic datatype defini-
tion.

datatype ’a lt = Var ’a

| Abs ’a "’a lt"

| $ "’a lt" "’a lt" (infixl 200)

1We use notation ([M]) instead of [[M]] because [[M]] conflicts
with Isabelle’s notation.

The type of terms ’a lt is parameterized with the type ’a

of variables. The type ’a can be any type: our definition
of substitution does not require renaming and thus a type
with a finite number of values can be used for variables.

In this representation, the source and target languages
with different sets of variables can share the same abstract
syntax. In the CPS transformation, we represent the set of
variables of the target language by the following datatype.

datatype ’a variable = Orig ’a ("_~")| k | m | n

The variables introduced by the transformation are repre-
sented by constants: k, m and n. A variable x in the source
language is translated into x~, that is, an abbreviation of
Orig x.

Using this abstract syntax, the CPS transformation is de-
fined as a polymorphic primitive recursive function. The
transformation can then be obtained by refining the previ-
ous definition and is shown in Figure 2. By this formal-
ization, freshness of the variables k, m and n is imposed
implicitly and we do not have to maintain the restriction
explicitly. Then, proofs of many lemmas are greatly simpli-
fied. For example, the following is the substitution lemma
for the CPS transformation.

[[M ]][Ψ(V )/x] = [[M [V/x]]]

where Ψ(V ) is defined as follows: Ψ(x) = x and Ψ(λx.M) =
λx.[[M ]]. This is one of the key lemmas in Plotkin’s proof,
and its proof there requires 23 lines. The following is the
proof of the lemma in Isabelle. It is proved by induction
on the structure of M, followed by the automatic theorem-
proving tactics auto.

lemma [[isValue V; closed V]] =⇒
([M[V/x]]) = ([M])[Ψ(V)/(x~)]

by(induct M,auto)

If we adopt the unparameterized abstract syntax, the proof
gets more complicated. The statement of the lemma must
explicitly mention that M does not contain 0, 1 and 2 as
variables.

The main part of our verification is based on Plotkin’s
proof. Plotkin introduced the auxiliary transformation M :K,
called the colon transformation, and showed the correctness
of the CPS transformation by the following properties.

1. [[M ]]K →∗ M :K (if K is a closed value).



2. If M → N then M :K →∗ N :K (if K is a closed value).

Plotkin’s proofs of these properties require 17 and 25 lines,
respectively. Our proof scripts of these lemmas consist of 82
and 90 lines. It was not very difficult to translate Plotkin’s
proofs into the proofs in Isabelle.

4. DANVY AND NIELSEN’S CPS TRANS-
FORMATION

4.1 Formalization of the transformation
We verified an optimized version of the CPS transforma-

tion by Danvy and Nielsen [5]. This verification was much
more difficult than our verification of Plotkin’s CPS trans-
formation. In addition to the problem we described in the
previous section, we encountered several other problems in
formalizing and proving the correctness of the transforma-
tion. We outline our formalization mostly without using the
syntax of Isabelle. The concrete formalization in Isabelle
can be obtained by translating the material in this section.

Danvy and Nielsen’s CPS transformation avoids introduc-
ing redundant β-redexes. For comparison, let us consider the
following Plotkin’s transformation:

[[x1x2]](λy.y) = (λk.(λk.kx1)(λm.(λk.kx2)(λn.mnk)))(λy.y)

where many redundant redexes are introduced by the trans-
formation. Danvy and Nielsen’s transformation is one of
the CPS transformations that avoid introducing these re-
dundant redexes. Their transformation is defined as the
following mutually recursive transformations:

Ψ(x) = x
Ψ(λx.M) = λx.λk.[[M ]]k

[[V ]]K = KΨ(V )
[[V0V1]]K = Ψ(V0)Ψ(V1)K

[[V0M1]]K = [[M1]](λa1.Ψ(V0)a1K)
[[M0V1]]K = [[M0]](λa0.a0Ψ(V1)K)

[[M0M1]]K = [[M0]](λa0.[[M1]](λa1.a0a1K))

where Ψ(V ) and [[M ]] are transformations of values and
terms, respectively. A continuation K is given as an ar-
gument of the transformation [[M ]]. For example, x1x2 with
continuation λy.y is transformed into the following term:

[[x1x2]](λy.y) = x1x2(λy.y)

where no redundant redex is introduced.
The first problem with this transformation concerns fresh

variables introduced in the transformation. For Danvy and
Nielsen’s CPS transformation, it is not enough to introduce
a fixed number of fresh variables. In the specification, there
are three variables introduced by the transformation: k, a0

and a1. However, many instances of the variable a0 are
required simultaneously. The following example clarifies the
problem.

[[x1x2(x3x4x5)]](λy.y) =
x1x2(λa0.x3x4(λa′

0.a
′
0x5(λa1.a0a1(λy.y))))

During the computation of x3x4, the value of x1x2 must
be preserved. Thus, a0 and a′

0 must be different variables.
This is not clear from the definition and we first thought
that it was enough to introduce the three variables a0, a1

and k as in Plotkin’s CPS transformation. However, in the

specification, it is assumed that clashes of variable names are
resolved by renaming bound variables. Since this renaming
is not performed automatically, it is not possible to formalize
the specification, above, directly in Isabelle.

To eliminate implicit renaming of the variable a0, we take
the approach of generating fresh variables explicitly. Most
compilers obtain fresh variables in this approach. We revise
the definition of the transformation so that the transforma-
tion [[·]]i is indexed by a natural number, which is used to
generate fresh variables. The following is the definition of
the revised transformation:

[[V ]]iK = KΨ(V )
[[V0V1]]iK = Ψ(V0)Ψ(V1)K

[[V0M1]]iK = [[M1]]i(λai.Ψ(V0)aiK)
[[M0V1]]iK = [[M0]]i(λai.aiΨ(V1)K)

[[M0M1]]iK = [[M0]]i(λai.[[M1]]i+1(λai+1.aiai+1K))

where we assume there are fresh variables ai indexed by a
natural number i.

We first formalized Danvy and Nielsen’s transformation
based on this specification. As Plotkin’s CPS transforma-
tion, the source and target languages are formalized by the
same abstract syntax parameterized with the type of vari-
ables. We represented the variables after the translation
with the following datatype:

datatype ’a variable = Orig ’a ("_~")

| Avar nat ("_~~")

| k

where x~ and i~~ represent the variable x in the source lan-
guage and ai introduced by the transformation, respectively.
Then the specification can be formalized as functions with
the following types:

consts

Psi:: ’a lt => ’a lt’

CPS:: [’a lt, nat, ’a lt’] => ’a lt’

where ’a lt’ is an abbreviation of ’a variable lt.
The second problem concerns formalization of the trans-

formation [[·]]i as a higher-order function: the transformation
of a term is not a term, but a function from terms to terms.
The automated theorem-proving tactics of Isabelle do not
work effectively for this specification, so that even very sim-
ple lemmas cannot be proved automatically. Thus, it was
not feasible to do verification based on this specification.

To solve this problem, we reformulated the transformation
as a function from terms into contexts. To represent the
transformation we introduced context C defined as follows:

C ::= [ ] | λai.C | MC | CM

The following is the reformulation of the transformation: we
write ([M ])i for the transformation based on contexts.

([V ])i = [ ]Ψ(V )
([V0V1])i = Ψ(V0)Ψ(V1)[ ]

([V0M1])i = ([M1])i ◦ (λai.Ψ(V0)ai[ ]))
([M0V1])i = ([M0])i ◦ (λai.aiΨ(V1)[ ])

([M0M1])i = ([M0])i ◦ (λai.[ ]) ◦ ([M1])i+1 ◦ (λai+1.aiai+1[ ])

where C1◦C2 is the composition of contexts C1 and C2. This
reformulation is possible because K appears exactly once in
[[M ]]K. We showed that two definitions are equivalent in
Isabelle: [[M ]]iK = ([M ])i[K] where the operation C[N ] fills



the hole of C with N . Then we used the formalization based
on contexts in our verification.

For the specification based on contexts, it was possible to
show basic properties of the transformation with automated
theorem-proving tactics. We first extended basic operations
on terms such as the set of free variables and substitution
to contexts. Since the definitions of the most operations are
straightforward, we show only the definition of substitution
on contexts:

[ ][N/x] = [ ]
(λai.C)[N/x] = λai.C[N/x]
(MC)[N/x] = M [N/x]C[N/x]
(MC)[N/x] = C[N/x]M [N/x]

where the variable x is restricted to a variable of the source
language. Then the following properties of the transforma-
tion are verified with automated theorem-proving tactics.

• FV (M) = FV (([M ])i)

• ([M [V/x]])i = ([M ])i[Ψ(V )/x]

The third problem in verification of the transformation
concerns the α-equivalence of terms. Danvy and Nielsen
proved the correctness of their CPS transformation by the
following property.

M → N ⇒ [[M ]]K →∗ [[N ]]K

However, this property does not hold in our formalization
based on abstract syntax with variable names. In fact,
([M ])i[K] is not reduced to ([N ])i[K], but to a term that is
α-equivalent to ([N ])i[K]. Thus, we must show the following
property.

M → N ⇒ ([M ])i[K] →∗ N ′ and
([N ])i[K] =α N ′ for some N ′

Verification of this property requires formalization of α-
equivalence.

4.2 Formalization of α-equivalence
We found that the standard formalization of α-equivalence

was not natural for our formalization and cumbersome for
automated theorem proving.

The operational semantics itself can be formalized without
considering α-conversion and thus the set of variables can
be finite. However, if the set of variables is finite, then the
standard formalization of α-equivalence is not sufficient to
derive the equivalence of terms. For example, if we have
only two variables x and y, the following equivalence cannot
be derived.

λx.λy.xy =α λy.λx.yx

Furthermore, it is rather difficult to derive α-equivalence
of terms automatically in the standard formalization, be-
cause the standard formalization of α-equivalence contains
the rule of transitivity and is not syntax-directed. Thus, it
is not straightforward to determine whether two terms are
α-equivalent automatically.

To overcome these issues, we formalized α-equivalence as
a syntax-directed deductive system. Let Var be the set of
variables. We say E ⊆ Var×Var is a renaming if (x, y) ∈ E
and (x′, y′) ∈ E implies x = x′ ⇔ y = y′. Any renaming
can be extended to a permutation on the set of variables
if the set of variables is finite. However, a renaming that

cannot be extended to a bijection is also sometimes useful.
The following relation is a renaming for the set of variables
{xi | i ∈ N}.

{(xi, xi+1) | i ∈ N}
The extension of a renaming E ⊕ (x, y) is defined as follows:

E ⊕ (x, y) = {(a, b) | (a, b) ∈ E ∧ a �= x ∧ b �= y} ∪ {(x, y)}
We define a deductive system with judgments of the form
E � M =α N , which means M and N are α-equivalent
under the renaming E. The deductive system is defined as
follows:

(x, y) ∈ E

E � x =α y

E ⊕ (x, y) � M =α M ′

E � λx.M =α λy.M ′

E � M =α M ′ E � N =α N ′

E � MN =α M ′N ′

We write � M =α N if ID � M =α N where ID is the
identity relation on the set of variables.

4.3 Alpha-equivalence in verification
Based on the deductive system of α-equivalence we veri-

fied Danvy and Nielsen’s CPS transformation. In our verifi-
cation, it was necessary to show the following α-equivalence:

� ([M ])i[K] =α ([M ])i+1[K]

where FV (K) ∩ {ai | i ∈ N} = ∅. Please note the set of
variables in the target language of the transformation is the
union of the set of variables of the source language Varsrc
and the set of variables introduced by the transformation
{ai | i ∈ N} ∪ {k}.

In order to prove the property above, we first extended
α-equivalence to contexts as follows:

E � [ ] =α [ ]
E � C =α C

′ (ai, aj) ∈ E

E � λai.C =α λaj .C
′

E � M =α M ′ E � C =α C
′

E � MC =α M ′
C

′

E � M =α M ′ E � C =α C
′

E � CM =α C
′M ′

This deductive system is designed so that the following prop-
erty holds.

• If E � C =α C
′ and E � M =α M ′ then E � C[M ] =α

C
′[M ′].

Then we proved the α-equivalence above in the following
manner.

1. It is sufficient to show the following property:

ID′ ∪ {(ai, ai+1) | i ∈ N} � ([M ])i[K] =α ([M ])i+1[K]

where ID′ is {(x, x) | x ∈ Varsrc} ∪ {(k, k)}. It is be-
cause FV (([M ])i[K]) ∩ {ai | i ∈ N} = ∅.

2. We decompose the relation into the following relations
with the property of α-equivalence on contexts.

ID′ ∪ {(ai, ai+1) | i ∈ N} � ([M ])i =α ([M ])i+1

ID′ ∪ {(ai, ai+1) | i ∈ N} � K =α K



x ∈ BVU
M ∈ BVU

λx.M ∈ BVU

M ∈ BVU N ∈ BVU FV (MN) ∩ LBV(MN) = ∅
MN ∈ BVU

M ∈ BVU N ∈ BVU FV (let x = M in N) ∩ LBV(let x = M in N) = ∅
let x = M in N ∈ BVU

Figure 3: Bound variable uniqueness

3. The first relation is proved by induction on structure
of M . The second relation is obtained from FV (K) ∩
{ai | i ∈ N} = ∅.

There is another important property of α-equivalence to
show correctness of Danvy and Nielsen’s transformation: α-
equivalence and reduction commute.

• If L =α M and M → N then L → N ′ and N ′ =α N
for some N ′.

This does not hold for the λ-calculus formalized with vari-
able names where reduction of open terms is considered [18].
In our formalization, α-equivalence and reduction commute
because V in the reduction (λx.M)V → M [V/x] is restricted
to a closed term. The property is proved from the following
substitution lemma on α-equivalence.

• If E ⊕ (x, y) � M =α M ′ and ∅ � V =α V ′ then
E � M [V/x] =α M ′[V ′/y].

4.4 Verification for let-expressions
We extend our verification of Danvy and Nielsen’s trans-

formation to the language with let-expressions. This verifi-
cation illustrates that it is essential to impose uniqueness of
bound variables in a source term in order to simplify veri-
fication of some program transformations. We consider the
following extended language.

M ::= x | λx.M | MM | let x = M in M

Danvy and Nielsen’s transformation on let-expressions is de-
fined as follows:

[[let x = V0 in M1]]K = let x = Ψ(V0) in [[M1]]K
[[let x = M0 in M1]]K = [[M0]](λa0.let x = a0 in [[M1]]K)

For this transformation, a clash of variable names may hap-
pen if a variable name is not uniquely used in a source term.
In the following example, the free variable x in the the source
term is made bound by the transformation.

[[(let x = y in x)x]](λz.z) = let x = y in x(λa0.a0x(λz.z))

Danvy and Filinski solved this clash of variable names by
introducing an explicit renaming into their version of the
CPS transformation [4]. We first tried their approach, but
introducing renaming into the transformation makes it very
difficult to prove properties of the transformation.

This kind of variable name clashes are usually solved by
assuming that all bound variables are distinct in compilers.
This assumption makes implementation of the transforma-
tion much simpler. We basically took this approach, but
adopted a weaker assumption on variable names because
the property that all bound variables are distinct is not

preserved by reduction. We write LBV(M) for the set of
let-bound variables of M defined as follows:

LBV(V ) = ∅
LBV(M0M1) = LBV(M0) ∪ LBV(M1)

LBV(let x = M0 in M1) = {x} ∪ LBV(M0) ∪ LBV(M1)

Note that let-bound variables inside lambda abstractions are
not included in LBV(V ). Based on this definition, we induc-
tively defined the set of terms BVU where let-bound vari-
ables are uniquely used. The definition is shown in Figure 3.
The following property of BVU ensures that no name clash
occurs when a term in BVU is transformed.

• If M ∈ BVU then LBV(M) ∩ FV (M) = ∅.

It is also shown that BVU is closed under substitution.

• If M, V ∈ BVU and V is a closed value then M [V/x] ∈
BVU.

This holds because the let-bound variables inside lambda
abstraction are not included in LBV(V ). From this property,
it is shown that BVU is preserved by reduction: if M ∈ BVU
and M → N then N ∈ BVU.

For verification of the transformation we showed that the
following two key lemmas by assuming that M is in BVU.
The proofs cannot be automated as much as those for the
language without let-expressions.

• If M ∈ BVU then FV (M) = FV (([M ])i).

• If M ∈ BVU then ([M [V/x]])i = ([M ])i[Ψ(V )/x].

With these lemmas, the rest of the verification was almost
the same as that of Danvy and Nielsen’s transformation
without let-expressions.

5. DANVY AND FILINSKI’S CPS TRANS-
FORMATION

We also verified Danvy and Filinski’s CPS transforma-
tion. Danvy and Filinski’s transformation is defined with
the two-level lambda and more complicated than Danvy
and Nielsen’s transformation. However, we could verify the
transformation with the same techniques used for Danvy and
Nielsen’s transformation. Danvy and Nielsen’s transforma-
tion was derived from Danvy and Filinski’s CPS transfor-
mation by unfolding and folding [5].

The transformation is formalized with the two-level lambda



([...])i : syntax → context × syntax
([x])i = ([ ], x)

([λx.M ])i = ([ ], λx.λk.([M ])′[k])
([M1M2])i = (fst(([M1])i) ◦ fst(([M2])i+1) ◦ snd(([M1])i)snd(([M2])i+1)(λai.[ ]), ai)

([...])′ : syntax → context
([x])′ = [ ]x

([λx.M ])′ = [ ](λx.λk.([M ])′[k])
([M1M2])

′ = fst(([M1])0) ◦ fst(([M2])1) ◦ snd(([M1])0)snd(([M2])1)[ ]

Figure 4: Reformulation of Danvy and Filinski’s CPS transformation with contexts

calculus as follows:

[[...]] : syntax → (syntax → syntax) → syntax

[[x]] = λκ.@κx

[[λx.M ]] = λκ.@κ(λx.λk.@[[M ]]′k)

[[M1M2]] = λκ.@[[M1]](λm.@[[M2]](λn.mn(λa.@κa)))

[[...]]′ : syntax → syntax → syntax

[[x]]′ = λk.kx

[[λx.M ]]′ = λk.k(λx.λk.@[[M ]]′k)

[[M1M2]]
′ = λk.@[[M1]](λm.@[[M2]](λn.mnk))

The overlined λ and @ correspond to functional abstractions
and applications in the translation program and they are
reduced at translation time. Thus, only the other abstrac-
tions and applications remain after translation. The trans-
formation is formalized as two mutually recursive transfor-
mations to preserve tail-calls. A whole program is translated
as @[[M ]](λm.m).

We encountered the basically same difficulties in formal-
izing and verifying this transformation as those in Danvy
and Nielsen’s transformation. To avoid clashes of variable
names, we formalized the transformation as follows:

[[x]]i = λκ.@κx

[[λx.M ]]i = λκ.@κ(λx.λk.@[[M ]]′k)

[[M1M2]]i = λκ.@[[M1]]i(λm.@[[M2]]i+1(λn.mn(λai.@κai)))

[[x]]′ = λk.kx

[[λx.M ]]′ = λk.k(λx.λk.@[[M ]]′k)

[[M1M2]]
′ = λk.@[[M1]]0(λm.@[[M2]]1(λn.mnk))

where we assume there are fresh variables ai indexed by a
natural number i.

Further, we reformulated the transformation with con-
texts for verification. We could do that because [[M ]]i can
always be written λk.C[kV ] for some C and V . The refor-
mulation of the transformation with contexts is shown in
Figure 4. This specification of the transformation is not
intuitive, but it was still easier to reason about it with auto-
mated theorem-proving tactics than the higher-order speci-
fication above.

With this formalization of the transformation, verifica-
tion of its correctness was analogous to that of Danvy and
Nielsen’s transformation.

6. RELATED WORK
We have chosen first-order abstract syntax with variable

names as representation of terms. McKinna and Pollack
also formalized a theory of pure type systems in the theorem

prover LEGO, with abstract syntax with variable names [10].
Recently, the Church-Rosser property of the lambda calcu-
lus was shown in Isabelle/HOL based on abstract syntax
with variable names [18]. Formalization of reduction in these
works differs from that of our work in the sense that they
must consider β-reduction of open terms.

Another approach to abstract syntax uses de Bruijn in-
dexes to represent bound variables. This approach has the
advantage that α-equivalent terms have unique representa-
tion. This approach was taken by several works formalizing
theory of programming languages in Isabelle/HOL [11, 1].
However, we think that the de Bruijn notation makes it diffi-
cult to formalize and reason about program transformations,
as we discussed in Section 2. For example, formalization of
Danvy and Filinski’s CPS transformation based on de Bruijn
indexes would be very complicated.

The third approach uses higher-order abstract syntax [15],
where object-level abstractions are represented by meta-
level abstractions. This approach often simplifies the for-
malization of binding in theorem provers, and is used for
verification in theorem provers based on a logical frame-
work [8]. However, it was reported that higher-order ab-
stract syntax is difficult to treat in theorem provers such as
Isabelle/HOL and Coq [7].

Danvy, Dzafic and Pfenning showed some syntactic prop-
erties of Danvy and Filinski’s transformation [3]. They for-
malized their proofs in Elf, a constraint logic-programming
language based on the logical framework [9, 14]. Their for-
malization is based on higher-order abstract syntax and thus
they do not have the problems of fresh variables and α-
equivalence. Instead, they needed to reformulate the trans-
formation as a deductive system.

7. CONCLUSIONS
We have verified several versions of the CPS transforma-

tions based on abstract syntax with variable names. The
main obstacles in our verification was treatment of variable
names. First, we have shown that freshness of variables in-
troduced by a transformation can be imposed by abstract
syntax parameterized with the type of variables. Secondly,
formalization of α-equivalence as a deductive system makes
it possible to show α-equivalence by automated theorem-
proving tactics. Finally, uniqueness of let-bound variables is
imposed to simplify Danvy and Nielsen’s transformation ex-
tended for let-expressions. Even though we needed to devise
these methods, we think that it is feasible to verify correct-
ness of program transformations based on abstract syntax
with variable names.
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