
Reachability Analysis of the HTML5 Parser
Specification and its Application to

Compatibility Testing

Yasuhiko Minamide and Shunsuke Mori

University of Tsukuba, Japan

Abstract. A draft standard for HTML, HTML5, includes the detailed
specification of the parsing algorithm for HTML5 documents, includ-
ing error handling. In this paper, we develop a reachability analyzer for
the parsing specification of HTML5 and automatically generate HTML
documents to test compatibilities of Web browsers. The set of HTML
documents are extracted using our reachability analysis of the state-
ments in the specification. This analysis is based on a translation of the
specification to a conditional pushdown system and on a new algorithm
for the reachability analysis of conditional pushdown systems.

In our preliminary experiments, we generated 353 HTML documents
automatically from a subset of the specification and found several com-
patibility problems by supplying them to Web browsers.

1 Introduction

A draft standard for HTML, HTML5 [Con12], includes the detailed specifica-
tion of the parsing algorithm for HTML5 documents, including error handling.
Although it is intended that this will solve compatibility issues in HTML pars-
ing, several current implementations of Web browsers and parsing libraries have
compatibility issues caused by the complexity of the specification.

In this paper, we develop an analyzer for the specification that checks the
reachability of statements in the specification. We then apply the analyzer to
generate a set of HTML documents automatically, which are used to test compat-
ibilities of Web browsers with respect to the specification. The set of generated
HTML documents enables path testing. That is, the tests cover both true and
false cases for all conditional statements in the specification. The reachability
analysis is based on a translation of the specification to a conditional pushdown
system [LO10] and on a new algorithm for the reachability analysis of conditional
pushdown systems.

In the first step of the development, we introduce a specification language to
describe the parsing algorithm of HTML5 formally. We concentrate on the stage
of parsing that follows tokenization, called tree construction in the specification.
The algorithm for the tree-construction stage is specified in terms of a stack
machine, with the behaviour for each input token being described informally

in English. We formalize the specification by introducing an imperative pro-
gramming language with commands for manipulating the stack. The distinctive
feature of the specification is that the specification inspects not only the top of
the stack, but also the contents of the whole stack. Furthermore, the parsing al-
gorithm destructively modifies the stack for elements called formatting elements.
However, we exclude formatting elements from our formalized specification be-
cause of difficulties with the destructive manipulation of the stack. This is the
main limitation of our work.

Our reachability analysis of the specification is based on that for conditional
pushdown systems. Esparza et al. introduced pushdown systems with check-
points that has the ability to inspect the contents of the whole stack and showed
that they can be translated to ordinary pushdown systems [EKS03]. Li and
Ogawa reformulated their definition and called them conditional pushdown sys-
tems [LO10]. The translation to ordinary pushdown systems causes the size of
the stack alphabet to increase exponentially, which makes direct translation in-
feasible for the implementation of the reachability analysis. To overcome this
problem, we design a new algorithm for reachability analysis that is a direct ex-
tension of that for ordinary pushdown systems [BEM97,EHRS00]. Our algorithm
is obtained by extending P-automata that describe a set of configurations to au-
tomata with regular lookahead. Although it still has an exponential complexity,
it avoids the exponential blowup caused by the translation before applying the
reachability analysis.

We have developed a reachability analyzer for the HTML5 parser specifi-
cation based on the translation to a conditional pushdown system and on the
reachability analysis on it. A nontrivial subset of the tree-construction stage con-
sisting of 24 elements and 9 modes is formalized in our specification language.
In our preliminary experiments, we have generated 353 HTML documents au-
tomatically from the subset of the specification and found several compatibility
problems by supplying them to Web browsers.

This paper is organized as follows. Section 2 reviews the HTML5 parser
specification and introduces our language for formalizing the specification. The
reachability analysis of the specification and its application to test-case gen-
eration are also discussed in this section. We introduce conditional pushdown
systems and present a new algorithm for their reachability analysis in Section 3.
The translation from the specification language to conditional pushdown sys-
tems is described in Section 4. In Section 5, we describe our implementation and
present our experimental results. Finally, we discuss related work and conclude.

2 HTML5 Parser Specification and Reachability Analysis

2.1 HTML5 Parser Specification

The algorithm for the HTML5 parsing is specified as a stack machine whose
behaviour depends on a variable called the insertion mode. The insertion mode
keeps track of the part of an HTML document that the parser is processing, such

as “initial”, “in body”, or “in table”. The stack of open elements stores elements
that have not yet been closed during parsing, and is used to match corresponding
end tags and to handle errors. When the parser inserts a new HTML element,
it appends the new element to the top element of the stack and pushes it onto
the stack as follows.

HTML

BODYHEAD

HTML

BODY

DOM Tree Stack

insert “p”

HTML

BODY

P

HEAD

HTML

BODY

P

DOM Tree Stack

The specification is written in English and is quite complex. The following is
part of the HTML5 specification for the “in body” insertion mode.

↪→ A start tag whose tag name is one of: ..., “p”, ...
If the stack of open elements has a p element in button scope,
then act as if an end tag with the tag name “p” had been seen.
Insert an HTML element for the token.

The specification is sometimes rather difficult to interpret precisely, and it is not
possible to analyze the specification mechanically.

The first step in the analysis of the specification is to introduce a specification
language. Figure 1 is an example of a formalized specification using our specifi-
cation language. The specification comprises a set of mode definitions, with each
mode definition containing specifications of the behaviour for start and end tags
in the mode. The behaviour for each tag is described as an imperative program
that manipulates the stack of open elements with commands including PUSH and
POP. We also allow the following commands:

– MODE[mode] changes the insert mode to mode. The change of mode affects
the behaviour of the PSEUDO command below.

– PSEUDO[t] is basically a procedure call and the parser acts as if a tag t had
been seen.

– ERROR records that an error is encoutered during parsing and does nothing
in our model.

In the specification for each tag, the variable me refers to the element name for
the tag. The command insertElement is currently defined as follows.

sub insertElement [target] = PUSH [target]

This definition is used because we are currently interested only in the reachability
analysis of the specification and are ignoring the construction of the DOM tree.

The most notable feature of the specification language is the inspection of
the current stack content. In the example, the current contents of the stack

mode inbody{

<p> : {

if isInScope[buttonScopeElements, {P}] then

PSEUDO[</p>];

insertElement[me]

}

<h1>, <h2> : {

...

if match[{H1 | H2} .*] then{

ERROR; POP

};

insertElement[me]

}

<table> : {

insertElement[{Table}];

MODE["intable"]

}

...

}

Fig. 1. Example of a formalized specification

The stack of open elements is said to have an element in a specific scope consisting of
a list of element types list when the following algorithm terminates in a match state:

1. Initialize node to be the current node (the bottommost node of the stack).
2. If node is the target node, terminate in a match state.
3. Otherwise, if node is one of the element types in list, terminate in a failure state.
4. Otherwise, set node to the previous entry in the stack of open elements and return

to step 2. (This will never fail, since the loop will always terminate in the previous
step if the top of the stack — an html element — is reached.)

Fig. 2. The algorithm of “have a element in a specific scope”

are inspected by a regular expression match[{H1 | H2} .*], where regular
expression {H1 | H2} .* represents stacks whose top element is either H1 or H2.

The real capability stack inspection is utilized in the definition for <p> as
isInScope[buttonScopeElements, {P}]. It is the formalization of “have an
element in a specific scope” and its specification is shown in Figure 2. Although
the algorithm is rather complicated, the property can be checked by the following
inspection of the stack using a regular expression:

fun isInScope [list,target] = match[(element \ list)* target .*]

where element is a variable representing the set of all elements, and therefore
the set element \ list contains elements that exclude those in list.

In the formalization of the HTML5 specification, we also make explicit some
of the implicit assumptions that appear in the specification. In the following

mode inbody {

<select> : { PUSH[me]; MODE["inselect"] }

}

mode inselect {

<option>, <optgroup> : { PUSH[me] }

</optgroup> : {

if match[{Option} {Optgroup} .*] then

POP // (A)

else

NOP; // (B)

if match[me .*] then

POP // (C)

else

ERROR // (D)

}

}

Fig. 3. Example for reachability analysis

example, it is assumed that, at this point, the stack of open elements will have
either a “td” or “tr” element in the table scope.

If the stack of open elements has a td element in table scope, then act as
if an end tag token with the tag name ”td” had been seen.
Otherwise, the stack of open elements will have a th element in table
scope; act as if an end tag token with the tag name ”th” had been seen.

We formalize this specification by using the command FATAL and show that
FATAL is not reachable by applying our reachability analyzer. Please note that
it is normal to reach an ERROR command because it just records the parser
encounter an ill-formed HTML document.

if isInTableScope [{ Td }] then ...

else if isInTableScope [{ Th }] then ...

else FATAL

2.2 Reachability Analysis and Test Generation

We analyze the reachability of specification points via translation to a condi-
tional pushdown system. The main application is to test the compatibility of
HTML5 parsing with Web browsers and parsing libraries. Our reachability ana-
lyzer generates test cases that cover both true and false cases for all conditional
statements in the specification.

Let us consider the example shown in Figure 3. To cover both true and
false cases for all conditional statements, our reachability analyzer must check
the reachability of the points (A)–(D). By translating the specification to a
conditional pushdown system and applying the reachability analysis described
in Section 3.2, the analyzer finds that the point (A) is reachable from the initial
state of inbody with the empty stack by the following input.

<select><optgroup><option></optgroup>

A test document is generated from this input by appending appropriate end
tags as follows. By executing the interpreter of the specification language, we
compute the stack after the execution for the above input. Before the execution
of (A), we have stack Option, Optgroup, Select. The pop statements at (A)
and (C) are then executed. The execution for the input then results in stack
Select. We therefore generate the following HTML document as a test case by
appending the end tag of Select.

<select><optgroup><option></optgroup></select>

By applying the same method, we obtain the following test cases for (B)–(D).

<select></optgroup></select> // (B)

<select><optgroup></optgroup></select> // (C)

<select></optgroup></select> // (D)

We can then test the compatibility of Web browsers by supplying test cases
generated in this manner as HTML documents.

3 Conditional Pushdown Systems and Reachability
Analysis

We translate our specification language into conditional pushdown systems of
Li and Ogawa [LO10], which are a reformulation of pushdown systems with
checkpoints [EKS03]. Conditional pushdown systems extend ordinary pushdown
systems with the ability to check the contents of the whole stack against a regular
language.

3.1 Regular Languages and Derivatives

We briefly review the theory of regular languages with a focus on the deriva-
tives of regular languages [Brz64]. The theory of derivatives has drawn renewed
attention as an implementation technique for parsing and decision procedures
on regular languages [ORT09,KN11]. Let Reg(Γ) be the set of regular languages
over Γ .

For L ⊆ Γ ∗ and w ∈ Γ ∗, the derivative1 of L with respect to w is written as
w−1L and defined as follows.

w−1L = {w′ | ww′ ∈ L}

Brzozowski showed that there are a finite number of types of derivatives for
each regular language. More precisely, the set {w−1L | w ∈ Γ ∗} is finite for
any regular language L over Γ . This fact is the key to the termination of our
algorithm for the reachability analysis of conditional pushdown systems.

1 The derivative w−1L is also called the left quotient in many litterateurs.

In this paper, regular languages are often described in terms of regular ex-
pressions. The syntax of regular expressions over Γ is defined as follows2:

R ::= ∅ | ε | γ | R ·R | R+R | R∗

where γ ∈ Γ . We write L(R) for the language of regular expression R. We say
that a regular expression R is nullable if ε ∈ L(R). We characterize nullable
expressions in terms of following function ν(R).

ν(∅) = ∅ ν(ε) = ε
ν(γ) = ∅ ν(R∗) = ε

ν(R1 +R2) = ν(R1) + ν(R2) ν(R1 ·R2) = ν(R1) · ν(R2)

Brzozowski showed that the derivative γ−1R of a regular expression can be
computed symbolically using ν(R), as follows:

γ−1∅ = ∅ γ−1ε = ∅
γ−1γ = ε γ−1γ′ = ∅

γ−1R∗ = (γ−1R)R∗ γ−1(R1 +R2) = γ−1R1 + γ−1R2

γ−1R1 ·R2 = (γ−1R1)R2 + ν(R1)(γ−1R2)

The derivative of a regular expression can be extended for words with ε−1R = R
and (γw)−1R = w−1(γ−1R). We then have w−1L(R) = L(w−1R).

Our implementation utilizes regular expressions extended with intersection
and complement. The derivatives of extended regular expressions are computed
similarly, as described in [ORT09]. The automaton corresponding to a regular
expression is constructed only when we decide the language inclusion between
two regular expressions.

3.2 Conditional Pushdown Systems

We now review conditional pushdown systems that have the ability to check
the current stack contents against a regular language, and then present a new
algorithm for the reachability analysis.

Definition 1. A conditional pushdown system P is a structure 〈P, Γ,∆〉, where
P is a finite set of states, Γ is a stack alphabet, and ∆ ⊆ P×Γ×P×Γ ∗×Reg(Γ)
is a set of transitions.

A configuration of conditional pushdown system P is a pair 〈p, w〉 where
p ∈ P and w ∈ Γ ∗. The set of all configurations is denoted by C. We write

〈p, γ〉 R
↪→ 〈p′, w〉 if 〈p, γ, p′, w,R〉 ∈ ∆. The reachability relation is defined as

an extension of that for ordinary pushdown systems. A configuration 〈p, γw′〉
is an immediate predecessor of 〈p′, ww′〉 if 〈p, γ〉 R

↪→ 〈p′, w〉 and w′ ∈ R: the

2 For regular expressions in our specification language, we write alternation as R1|R2

instead of R1 +R2.

regular language R inspects the current stack contents excluding its top. The
reachability relation =⇒ is the reflexive and transitive closure of the immediate
successor relation. Then, the predecessor function pre∗ : 2C → 2C is defined by
pre∗(C) = {c | ∃c′ ∈ C.c =⇒ c′}.

Let us consider the following conditional pushdown system P1 shown below.

A transition labeled with γ/w|R from p to p′ denotes transition rule 〈p, γ〉 R
↪→

〈p′, w〉, and a transition labeled with γ/w is an abbreviation of γ/w|Γ ∗.

p0 p1 p2

a/aa, a/ca
c/cc, c/ac

a/ba

a/a|a∗ccΓ ∗

a/ba, b/ab
b/ε|abΓ ∗

a/ε

a/ε

In the transition from p0 to p2, the condition a∗ccΓ ∗ is used to check that two
c’s were pushed at p0 consecutively. In the transition from p1 to p1, the condition
abΓ ∗ is used to prevent the popping of the last b on the stack.

As discussed by Esparz et al. [EKS03], a conditional pushdown system can be
translated into an ordinary pushdown system by expanding its stack alphabet.
However, the translation causes the size of the stack alphabet and the transi-
tion relation to grow exponentially, and it is therefore not feasible to apply the
translation for the reachability analysis directly.

3.3 New Algorithm for Reachability Analysis

We describe our new algorithm for the reachability analysis of conditional push-
down systems. The reachability analysis of ordinary pushdown systems repre-
sents a regular set of configurations with P-automata [BEM97,EHRS00]. We
directly extend the algorithm by representing a regular set of configurations
with P-automata using regular lookahead.

Given a conditional pushdown system P = 〈P, Γ,∆〉, a P-automaton uses P
as a set of initial states and Γ as the input alphabet.

Definition 2. A P-automaton with regular lookahead is a structure A = 〈Γ,Q, δ,
P, F 〉, where Q is a finite set of states satisfying P ⊆ Q, δ ⊆ Q×Γ ×Q×Reg(Γ)
is a set of transition rules, and F is a set of final states.

We introduce the transition relation of the form q
w|w′−→ q for P-automata with

regular lookahead: it means that, at the state q, the automaton may consume w
and change its state to q′ if the rest of the input is w′. This is defined as follows:

– q
ε|w−→ q for any q ∈ Q and any w ∈ Γ ∗,

– q
γ|w−→ q′ if 〈q, γ, q′, R〉 ∈ δ and w ∈ R,

– q
wγ|w′−→ q′ if q

w|γw′−→ q′′ and q′′
γ|w′−→ q′.

Then, the set of configurations represented byA is defined as Conf(A) = {〈p, w〉 |
p ∈ P and p

w|ε−→ q for some q ∈ F}.
To formulate our new algorithm for reachability analysis, we also extend the

transition rules to those involving many steps, namely q
w|R
−−⇀ q′, as follows:

– q
ε|Γ∗
−−⇀ q,

– q
γ|R
−−⇀ q′ if 〈q, γ, q′, R〉 ∈ δ,

– q
wγ|γ−1R1∩R2

−−⇀ q′ if q
w|R1

−−⇀ q′′ and q′′
γ|R2

−−⇀ q′.

In the third case of the above definition, the two transition rules are combined
by composing two lookahead sets via quotient and intersection: γ−1R1 ∩R2. At
the state q′, γ−1R1 must be satisfied because the symbol γ is consumed by the
transition from q′′ to q′. The following lemma relates the extended transition
rules to transitions.

Lemma 1.

– If q
w|R
−−⇀ q′ and w′ ∈ R, then q

w|w′−→ q′.

– If q
w|w′−→ q′, then q

w|R
−−⇀ q′ and w′ ∈ R for some R.

The P-automaton Apre∗ representing pre∗(Conf(A)) can be computed by
extending the saturation rule of [BEM97]. That is, Apre∗ is obtained by adding
new transitions according to the following extended saturation rule:

– If 〈p, γ〉 R1
↪→ 〈p′, w〉 and p′

w|R2

−−⇀ q in the current automaton, add a transition

rule p
γ|R1∩R2

−−⇀ q.

Based on this saturation rule, we have also extended the efficient algorithm for
the reachability analysis [EHRS00] in a straightforward manner.

The following lemma and the finiteness of derivatives of a regular language
guarantee the termination of the application of the saturation rule.

Lemma 2. Let R = {R | 〈q, γ, q′, R〉 ∈ δ for some q, γ, q′}.

If q
w|R
−−⇀ q′′, then R =

⋂
R′ for some R′ ⊆ {w−1R | R ∈ R ∧ w ∈ Γ ∗}.

Let us consider the previous conditional pushdown system P1. We apply the
saturation algorithm to P1 to check the reachability to the set of configurations
C1 = {〈p2, w〉 | w ∈ L(c(a+ c)∗bΓ ∗)}. The P1-automaton in Figure 4 excluding
the dashed transitions represents C1 by using lookahead. The dashed transitions
are added by applying the saturation rule. The three transitions from p0 to qf
are added from the top. This shows that the configuration C1 is reachable from
p0 with a stack satisfying (a+ c)+bΓ ∗.

p0 p1 p2

qf

a, b, c

c|(a+ c)∗bΓ ∗

a

a

a|a∗ccΓ ∗

a|bΓ ∗

b|abΓ ∗

a|cΓ ∗ ∩ (a+ c)∗bΓ ∗

c|(a+ c)∗bΓ ∗

a|(a+ c)∗bΓ ∗

Fig. 4. P1-automaton obtained by the saturation algorithm

4 Translation to Conditional Pushdown Systems

In this section, we present the translation of the specification language to con-
ditional pushdown systems.

4.1 Expanding Pseudo Statements

The first step of the translation is to expand pseudo statements PSEUDO[t] at
non-tail positions. This is necessary because PSEUDO[t] is basically a procedure
call and its simulation requires another stack that is not synchronized with the
stack of open elements. Pseudo inputs at tail positions can be translated directly
into transitions of a pushdown automaton. To avoid infinite chains of inline
expansion, we do not expand PSEUDO[t] inside the code for the tag t. In the
following example, PSEUDO[</p>] in <p> and PSEUDO[<p>] in </p> should be
expanded because they are not at tail positions.

<p> : {

if isInButtonScope[{P}] then

PSEUDO[</p>];

insertElement[me]

}

</p> : {

if !isInButtonScope [{P}] then {

PSEUDO[<p>]; PSEUDO[</p>]

} else {

popuntil[{P}]

}

}

We obtain the following code by expanding them. Because we cannot expand
PSEUDO[<p>] in the code for <p>, it is translated into FATAL. If the FATAL intro-
duced in this translation is reachable, then the translation will not be faithful.
However, this is not the case in this example because PSEUDO[<p>] is constrained
by isInButtonScope[{P}] and !isInButtonScope[{P}].

<p> : {

if isInButtonScope[{P}] then {

if !isInButtonScope [{P}] then {

PSEUDO[<p>]; => FATAL

PSEUDO[</p>]

} else {

popuntil[{P}]

}

}

insertElement[me]

}

...

In order to check that FATAL statements introduced by this expansion are
not reachable, we check their reachability after the translation to a conditional
pushdown system. For the subset of the HTML5 specification we have formalized,
our reachability analyzer showed that they are not reachable.

4.2 Translation to Conditional Pushdown Systems

After expansion of pseudo statements, a specification is translated to a condi-
tional pushdown automaton. Then, a conditional pushdown system is obtained
by forgetting the input of the pushdown automaton. Let us consider the following
specification as an example.

</p> : {

if match[{Li}*{P}.*] then {

while !match[{P} .*] do POP; POP

}

}

<p> : { PUSH[{P}] }

This can be converted into the following state transition diagram, where each
transition is labeled with a tag indicating input, push, pop, or the condition
under which the transition occurs.

<p>

push P

</p>

¬Li∗P.∗
Li∗P.∗

¬P.∗

pop

P.∗pop

The transitions labeled with a tag, push, or pop can be translated directly to
those of pushdown automata. The transition label with a regular expression
representing the condition under which it occurs is translated as follows. Let us
consider a transition labeled with a regular expression R from q to q′.

– For each γ in the stack alphabet, a transition 〈q, γ〉
γ−1R
↪→ 〈q′, γ〉 is added to

the pushdown automaton.

In this example, the previous state transition diagram is translated to the
following conditional pushdown automaton under the stack alphabet {P,Li}:

<p>

push P

</p>

Li/Li | ¬Li∗P.∗

Li/Li | Li∗P.∗

P/P | .∗
Li/Li | .∗

pop

P/P | .∗pop

where push and pop are not translated for simplicity. The following derivatives
are used in the translation.

Li−1(Li∗P.∗) = (Li−1(Li∗))P.∗ + ν(Li∗)Li−1(P.∗) = Li∗P.∗

P−1(Li∗P.∗) = (P−1(Li∗))P.∗ + ν(Li∗)P−1(P.∗) = .∗

5 Experimental Results

We have implemented the reachability analyzer of our specification language. It
performs the translation from the specification language to conditional pushdown
systems and reachability analyses for these systems. It is implemented in OCaml
and based on the library for automata used in the PHP string analyzer [Min05].

The main application of the analyzer is to generate automatically a set of
HTML test documents from a specification. It is also used to check the con-
sistency of the specification and the translation. The current implementation
checks for consistency in the following two respects.

– The execution of the specification cannot cause stack underflow.
– FATAL statements in the specification or introduced by the translation are

unreachable.

The analyzer showed that these properties hold for the subset of the HTML5
parser specification described below.

We have formalized a nontrivial subset of the tree-construction stage of the
HTML5 specification. It is 438 lines in length, excluding comments and empty
lines, and contains the specification of 24 elements and 9 modes. This specifica-
tion can be obtained from http://www.score.cs.tsukuba.ac.jp/~minamide/

html5spec/model.html5. As we mentioned in the Introduction, this subset ex-
cludes the specification of formatting elements, which is one of the main limita-
tions of our work to date.

We applied our reachability analyzer to the specification using a Linux PC
with an Intel Xeon processor (3.0 GHz) and 16 GB memory. The specification
is translated to a conditional pushdown automaton with 487 states, and there
are 1186 specification points3 whose reachability had to be checked. For these
points, our reachability analyzer showed that 828 points were reachable from the

3 In the implementation, a specification point is represented by a pair comprising a
state and a regular expression. We may therefore have more specification points than
states.

initial state and generated 353 HTML documents excluding duplicates. In the
following table, the first row shows the length of an input sequence of tags and
the second row shows the number of points. For example, there are 380 points
for which the analyzer found an input sequence of length 3.

Length 1 2 3 4 5 6
Points 46 167 380 198 35 2

The reachability of the specification points was checked by applying the algo-
rithm described in Section 3.2 by adding the final states corresponding to them
in the P-automaton. It took 82 minutes to check the reachability of all the points
and required more than 3 Gbyte of memory during the computation.

We conducted compatibility tests on the following Web browsers and HTML5
parser libraries: html5lib [htm] is implemented in Python and closely follows the
specification, and htmlparser, the Validator.nu HTML parser [Val], is imple-
mented in Java and has been used for HTML5 in the W3C markup validation
service. The experiment was conducted on Mac OS X, version 10.7.3. The follow-
ing table shows the number of incompatibilities found when using the generated
set of 353 HTML documents. The numbers in parentheses are obtained after
merging similar incompatibilities.4

Safari Firefox Opera IE 5 html5lib htmlparser
Version 5.1.3 10.0.1 11.61 - 0.95 1.3.1

Incompatibilities 1 6 0 0 3 6
(1) (2) - - (1) (2)

The three main incompatibilities found in this experiment are listed below.
The lines labeled ‘Test’ and ‘Spec’ are the HTML documents generated by our
analyzer and the serialized representation of the results of parsing with the
HTML5 specification, respectively. The incompatible results are shown following
the Spec lines.

Test : <body><dd><optgroup><dd></dd></body>

Spec : <body><dd><optgroup></optgroup></dd><dd></dd></body>

Safari, Opera, html5lib, IE

: <body><dd><optgroup><dd></dd></optgroup></dd></body>

Firefox, htmlparser

Test : <body><ruby><button><rp></rp></button></ruby></body>

Spec : <body><ruby><button><rp></rp></button></ruby></body>

Opera, html5lib, IE

: <body><ruby><button></button><rp></rp></ruby></body>

Safari, Firefox, htmlparser

Test : <body><table></table></body>

Spec : <body><table></table></body>

Safari, Firefox, Opera, htmlparser, IE

<body><table></table></body>

html5lib

4 Some of the incompatibilities are caused by differences between versions of the
HTML5 specification, which is discussed below.

5 Consumer Preview, version 10.0.8250.0.

We have investigated the second case for Firefox. The specification for the
start rp tag can be written as follows.

if isInScope[{Ruby}] then {

generateImpliedEndTag[];

if !match[{Ruby} .*] then ERROR

};

insertElement[me]

The code of Firefox does not correspond to this, but to the specification
below. We found that this is compatible with the latest published version of the
specification, W3C Working Draft 25 May 2011, although we were working with
the Editor’s Draft 22 February 2012.

if isInScope[{Ruby}] then {

generateImpliedEndTag[];

if !match[{Ruby} .*] then ERROR

while !match[{Ruby} .*] do POP; <== Extra code in Firefox

};

insertElement[me]

6 Related Work

The reachability analysis of pushdown systems with checkpoints was studied by
Esparza et al. as an application of LTL model checking of pushdown systems
with regular valuations [EKS03]. They presented a translation to ordinary push-
down systems. Although reachability can be decided via the translation, it is not
practical to apply the translation because of exponential blowup of the size of
pushdown systems. They also showed that the reachability problem of pushdown
systems with checkpoints is EXPTIME-complete.

Reachability can also be decided by translation to extensions of pushdown
systems such as alternating pushdown systems and stack automata [GGH67].
An analysis for alternating pushdown systems is given in [BEM97] and that
for stack automata is given in [HO08] as reachability analysis for higher-order
pushdown systems. Although the translations to those systems do not incur
exponential blowup, their algorithms are more complicated than our reachability
analysis for conditional pushdown systems. An efficient algorithm for alternating
pushdown systems was developed in [SSE06,Suw09]. However, only an algorithm
for a restricted class with polynomial time complexity was implemented.

7 Conclusions

We have developed a reachability analyzer for the HTML5 parser specification
based on the analysis of conditional pushdown systems. The analysis is applied to
the automated generation of HTML documents for path testing of the specifica-
tion. Several compatibility issues in Web browsers and HTML5 parsing libraries
are found by supplying the documents to them.

One of the limitations of our work is that we cannot handle the specification
for formatting elements. This is because their specification requires destructive
manipulation of the stack. We are planning to address this limitation by checking
the reachability to the first point where a destructive operation on the stack is
required.

References

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: application to model-checking. In CONCUR ’97, pages 135–150,
1997. LNCS 1243.

[Brz64] Janusz Brzozowski. Derivatives of regular expressions. J. ACM, 11:481–494,
1964.

[Con12] World Wide Web Consortium. HTML5: Editor’s draft 22 February 2012,
2012. http://dev.w3.org/html5/spec/Overview.html.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms
for model checking pushdown systems. In CAV 2000, pages 232–247, 2000.
LNCS 1855.

[EKS03] J. Esparza, A. Kucera, and S. Schwoon. Model checking LTL with reg-
ular valuations for pushdown systems. Information and Computation,
186(2):355–376, 2003.

[GGH67] S. Ginsburg, S. A. Greibach, and M. A. Harrison. Stack automata and
compiling. J. ACM, 14(1):172–201, 1967.

[HO08] M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for
higher-order pushdown systems. Logical Methods in Computer Science, 4:1–
45, 2008.

[htm] html5lib. html5lib. http://code.google.com/p/html5lib/.
[KN11] Alexander Krauss and Tobias Nipkow. Proof pearl: Regular expression equiv-

alence and relation algebra. J. Automated Reasoning, published online March
2011.

[LO10] Xin Li and Mizuhito Ogawa. Conditional weighted pushdown systems and
applications. In Proceedings of the 2010 ACM SIGPLAN Workshop on Par-
tial Evaluation and Program Manipulation, pages 141–150, 2010.

[Min05] Yasuhiko Minamide. Static approximation of dynamically generated Web
pages. In Proceedings of the 14th International World Wide Web Conference,
pages 432–441. ACM Press, 2005.

[ORT09] Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives
re-examined. J. of Functional Programming, 19:173–190, 2009.

[SSE06] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. Efficient algorithms for
alternating pushdown systems with an application to the computation of
certificate chains. In ATVA 2006, pages 141–153, 2006. LNCS 4218.

[Suw09] Dejvuth Suwimonteerabuth. Reachability in Pushdown Systems: Algorithms
and Applications. PhD thesis, Technischen Universität München, 2009.

[Val] Validator.nu. The validator.nu html parser.
http://about.validator.nu/htmlparser/.

