
Draft of a paper to appear in IPSJ-SIGPRO.

Checking Time Linearity of Regular Expression Matching
Based on Backtracking

Satoshi Sugiyama1,a) YasuhikoMinamide1,b)

Abstract: Most implementations of regular expression matching in programming languages are based on backtrack-
ing. With this implementation strategy, matching may not be achieved in linear time with respect to the length of the
input. In the worst case, it may take exponential time. In this paper, we propose a method of checking whether or
not regular expression matching runs in linear time. We construct a top-down tree transducer with regular lookahead
that translates the input string into a tree corresponding to the execution steps of matching based on backtracking. The
regular expression matching then runs in linear time if the tree transducer is of linear size increase. To check this
property of the tree transducer, we apply a result of Engelfriet and Maneth. We implemented the method in OCaml
and conducted experiments that checked the time linearity of regular expressions appearing in several popular PHP
programs. Our implementation showed that 47 of 393 regular expressions were not linear.

Keywords: regular expression, tree transducer, linear size increase

1. Introduction
Regular expressions are extensively used in programs that ma-

nipulate strings such as web programs. However, there is an is-
sue that regular expression matching may take an unexpectedly
long time. In the worst case, it may take exponential time with
respect to the length of the input. This is because most implemen-
tations of regular expression matching in programming languages
are based on backtracking. Recently, it has been pointed out that
this issue can be exploited for DoS attack [14]. Furthermore, this
may not only be just a matter of time, but may also change the
behavior of a program unexpectedly in implementations such as
PCRE (Perl-compatible regular expression) [10]. PCRE involves
a limit on the number of steps executed for regular expression
matching. If the number of steps exceeds this limit, the matching
is considered to fail even if it would succeed eventually without
the limit [10] *1.

In this paper, we develop a method to check whether regular
expression matching runs in linear time with respect to the length
of the input. This method is significant for the following situa-
tions.
• The method can be used as a criterion for selecting a par-

ticular implementation of regular expression matching. Al-
though regular expression matching based on backtracking
takes exponential time in the worst case, its execution is fast
for expressions with linear execution time. It would then be
possible to choose an implementation based on backtracking
for those expressions with linear execution time.

• The method can be used to check existing programs in-

1 Department of Computer Science, University of Tsukuba
a) sugiyama@score.cs.tsukuba.ac.jp
b) minamide@cs.tsukuba.ac.jp
*1 Whether the limit has been exceeded can be checked by calling the func-

tion ‘preg last error()’, which returns the latest error code in the PCRE.
However, many programs do not check the error code.

volving regular expression matching. We could then ascer-
tain that regular expression matching runs in a reasonable
amount of time and does not exceed the limit. If we were
to find regular expressions whose matching may not run in
linear time, we could then devise a more efficient equivalent
regular expression, or use another implementation not based
on backtracking.

Our method constructs a tree transducer from a regular expres-
sion and then applies the theory of tree transducers to check its
properties. We construct a top-down tree transducer with regular
lookahead that translates an input string into a tree correspond-
ing to the execution steps of matching based on backtracking.
The size of the output tree is proportional to the running time
for regular expression matching. Therefore, the regular expres-
sion matching runs in linear time if the size of every output tree
of the tree transducer is linearly bounded by the size of the in-
put tree. We say that a transducer is of linear size increase if
it has this property. It is decidable whether a tree transducer is
of linear size increase by checking whether an equivalent input
proper tree transducer is finite copying. The notion of finite copy-
ing was introduced by Aho and Ullman [1] and it says that any
position of an input is translated by a transducer boundedly many
times. To check this property, we apply a result of Engelfriet and
Maneth [7].

We have implemented the method in OCaml and conducted ex-
periments that checked the time linearity of regular expressions
appearing in several popular PHP programs. The experiments
showed that 47 of 393 regular expressions were not linear. It
should be noted that our implementation only checks the prop-
erty of finite copying. Although linear size increase does not im-
ply finite copying in general, we believe that finite copying is
a necessary and sufficient condition for linear size increase for
transducers constructed from regular expressions by our method.

1



Draft of a paper to appear in IPSJ-SIGPRO.

2. Preliminaries
The set of natural numbers is denoted by N. For k ∈ N, [k]

denotes the set {1, . . . , k}. For a set S , |S | is the cardinality of S .
For a relation r ⊆ S × T and an element s ∈ S , r(s) = {t ∈

T | (s, t) ∈ r}. For S ′ ⊆ S , r(S ′) =
∪

s∈S ′ r(s). The domain
and range of r are defined by dom(r) = {s ∈ S | r(s) , ∅} and
range(r) = r(S ). For r1 ⊆ S × T and r2 ⊆ T × U, their composi-
tion is r1 ◦ r2 = {(s, u) ∈ S × U | (s, t) ∈ r1, (t, u) ∈ r2}.

A ranked alphabet is a tuple (Σ, Arity) where Σ is a finite set
and Arity is a function of type Σ→ N. For σ ∈ Σ, Arity(σ) is the
arity of σ. If we write σ(n), it implicitly requires Arity(σ) = n.
Σ(n) denotes {σ | σ(n) ∈ Σ}.

A structure constructed from a ranked alphabet is called a
ranked tree and we usually call it just a tree. The set of trees
constructed by a ranked alphabet Σ is denoted by TΣ. A sub-
set of TΣ is called a tree language. Let X be a set of variables.
Then, TΣ(X) is the set of trees constructed from Σ and X. V(t)
denotes the set of nodes of a tree t and is inductively defined by
V(σ(t1, . . . , tk)) = {ϵ} ∪ {iu | u ∈ V(ti), i ∈ [k]} where ϵ repre-
sents the root of the tree. For a tree t, the size of t is defined by
size(t) = |V(t)|. For a node u, t/u denotes the subtree of t at u. It
is defined by t/ϵ = t and σ(t1, t2, . . . , tk)/iu = ti/u. The lexico-
graphic order over the nodes of t is denoted by ≤. For t ∈ TΣ(X),
t1, . . . , tk ∈ TΣ, x1, . . . , xk ∈ X, we denote by t[xi ← ti | i ∈ [k]]
the tree obtained by substituting ti for xi in t.

We define two representations of strings over Σ as trees. In
MON(Σ), every σ ∈ Σ has rank 1 and an additional symbol with
rank 0 is used to denote the end of a string. In S TR(Σ), every
σ ∈ Σ has rank 0 and two additional symbols are used: a symbol
denoting the empty string and a symbol with rank 2 denoting the
concatenation of two strings. That is,

MON(Σ) = {σ(1)|σ ∈ Σ} ∪ {ϵ(0)
M },

S TR(Σ) = {σ(0)|σ ∈ Σ} ∪ {•(2), ϵ(0)
S }.

For example, the string abc is represented as a(b(c(ϵM))) over
MON(Σ) and •(a, •(b, c)) over S TR(Σ). In the case of MON(Σ),
strings and trees are in one-to-one correspondence. In the case of
S TR(Σ), their correspondence is one-to-many. For example, the
string abc can be represented as •(•(a, b), c) or •(•(a, ϵS ), •(b, c))
in addition to the representation above. For S TR(Σ), we say t is
compact if it is either ϵS or a tree that does not contain ϵS .

3. Tree-based Semantics of Regular Expres-
sion Matching

We focus on regular expression matching with priorities com-
patible with Perl and represent the execution steps of regular ex-
pression matching by a tree. The size of the tree is proportional
to the running time of the matching. Therefore, we can decide its
running time from the size of the tree. The semantics of regular
expression matching is given by the nondeterministic parser of
Sakuma et al. [15] defined by using the list monad.

The syntax of regular expressions is standard and defined as
follows.

r ::= ϵ (empty string)
| c (symbol)
| r1r2 (concatenation)
| r1|r2 (alternation)
| r∗1 (repetition)

The language of a regular expression r, denoted by L(r), is de-
fined as follows.

L(ϵ) = {ϵ}
L(c) = {c}
L(r1r2) = L(r1)L(r2)
L(r1|r2) = L(r1) ∪ L(r2)
L(r∗1) = L(r1)∗

For the purposes of this discussion, we exclude regular expres-
sions that contain a subexpression r∗1 such that ϵ ∈ L(r1). This
is because such expressions prevent a simple and intuitive defini-
tion of the semantics of Sakuma et al. [15] below, making them
nonterminating and ill defined. Furthermore, such regular expres-
sions are rarely used in practice.

Regular expressions in programming languages have priorities
in matching. In the alternation r1|r2, r1 has a higher priority than
r2. If both of them match, the string is considered as matched
with r1. Repetition r∗1 is expanded as r∗1 = r1r∗1|ϵ and it there-
fore matches as many repetitions of substrings matching with r1

as possible.
The semantics is defined so that a result of matching with a

higher priority comes earlier in the list. The concatenation of
two lists is denoted by ++. The semantics of regular expression
matching is defined as follows.
Definition 3.1 (Semantics of regular expression matching).

N[[r]] :: Σ∗ → Σ∗ list

N[[ϵ]]w = [w]

N[[c]]w =

 [w′] if w = cw′

[] otherwise

N[[r1r2]]w = N[[r1]]w≫= λw′.N[[r2]]w′

N[[r1|r2]]w = N[[r1]]w ++ N[[r2]]w

N[[r∗1]]w = (N[[r1]]w≫= λw′.N[[r∗1]]w′) ++ [w]

N[[r]]w returns a list of all possible strings that are obtained by
consuming a prefix of w matching with r.

Although the above semantics shows how to run regular ex-
pression matching, it explicitly says nothing about the execution
steps of regular expression matching. We therefore extend the se-
mantics by using the tree monad instead of the list monad, where
the size of the tree abstracts the number of execution steps re-
quired for matching. The tree monad used corresponds to the
SearchTree monad [12] of Hackage 2, which is a Haskell library.
The tree monad is defined as follows.

α tree ::= Unit α
| Fail
| Or (α tree) × (α tree)

The bind function≫= is defined as follows.

2



Draft of a paper to appear in IPSJ-SIGPRO.

n = 0

t0 Or

Unit bFail

n = 1

t1 Or

Unit abOr

Unit bFail

=

=

n = 2

t2 Or

Unit aabOr

Unit abOr

Unit bFail

=

Fig. 1 Trees of T [[a∗]]anb

≫=tree :: α tree→ (α→ β tree)→ β tree

Unit w≫=tree f = f w

Fail≫=tree f = Fail

Or(t1, t2)≫=tree f = Or(t1≫=tree f , t2≫=tree f )

The semantics of regular expression matching is then extended
by the tree monad so that it abstracts its execution steps.
Definition 3.2 (Tree-based Semantics of Regular Expression
Matching).

T [[r]] :: Σ∗ → Σ∗ tree

T [[ϵ]]w = Unit w

T [[c]]w =

 Unit w′ if w = cw′

Fail otherwise

T [[r1r2]]w = T [[r1]]w≫= λw′.T [[r2]]w′

T [[r1|r2]]w = Or(T [[r1]]w, T [[r2]]w)

T [[r∗1]]w = Or(T [[r1]]w≫= λw′.T [[r∗1]]w′,Unit w)

The function T [[r]] preserves the priority of regular expression
matching. For example, t1 is a higher priority than t2 for Or(t1,t2).
We then have the following theorem.
Theorem 3.3.

leaflist(T [[r]]w) = N[[r]]w

where the function leaflist is defined as follows.

leaflist (Unit w) = [w]
leaflist Fail = []
leaflist (Or(t1, t2)) = (leaflist t1)++(leaflist t2)

The size of the tree returned by the function T [[r]] is propor-
tional to the time required to search all possible results of regular
expression matching. We can therefore discuss the running time
for searching all possible results of matching wwith r by deciding
the size of the tree T [[r]]w.
Example 3.4 (Case of O(n)). Let us consider tn = T [[a∗]]anb.
Figure 1 shows t0, t1, and t2. The size of each tree is size(t0) = 3,
size(t1) = 5, and size(t2) = 7. Then, size(tn) = 2n + 3. The actual
execution times by PCRE are 31.0ms for n = 1, 000, 000, 61.9ms
for n = 2, 000, 000, and 124ms for n = 4, 000, 000 *2.
Example 3.5 (Case of O(n2)). Let us consider un = T [[a∗a∗]]anb.
Figure 2 shows u0, u1, and un. The size of each tree is as follows.

*2 We show the average time for five executions in the C language.

n = 0

u0 Or

t0Fail

=

n = 1

u1 Or

t1u0

=

general case

un Or

tnun−1

=

Fig. 2 Trees of T [[a∗a∗]]anb

n = 0

v0 Or

Unit bFail

n = 1

v1 Or

Unit abOr

v0Fail

=

=

n = 2

v2 Or

Unit aabOr

v1Or

v0Fail

=

Fig. 3 Trees of T [[(aa∗)∗]]anb

size(u0) = 2 + size(t0) = 5

size(u1) = size(u0) + size(t1) + 1 = 11

size(un) = size(un−1) + size(tn) + 1

size(un) is expanded as follows.

size(un) =
n∑

k=1

(size(tk) + 1) + size(t0) + 2

=

n∑
k=1

(2n + 4) + 5

= n2 + 5n + 5

The actual execution times by PCRE are 1.41s for n = 10, 000,
5.70s for n = 20, 000, and 22.7s for n = 40, 000.
Example 3.6 (Case of O(2n)). Let us consider vn =

T [[(aa∗)∗]]anb. Figure 3 shows v0, v1, and v2. The size of
each tree is as follows.

size(v0) = 3

size(v1) = size(v0) + 4 = 7

size(v2) = size(v0) + size(v1) + 5 = 15

The size of vn is calculated as follows.

size(vn) =
n−1∑
k=1

size(vk) + n + 3

= size(vn−1) +
n−2∑
k=1

size(vk) + (n − 1) + 3 + 1

= 2size(vn−1) + 1

=

n+1∑
k=0

2k

= 2n+2 − 1

The actual execution times by PCRE are 1.07s for n = 23, 2.14s
for n = 24, and 4.27s for n = 25. If the limit on execution steps is
set to 1, 000, 000, 000, then the limit is exceeded for n = 28.

The function T [[r]] searches all results matching an input string

3



Draft of a paper to appear in IPSJ-SIGPRO.

Or

Or

Fail Or

Fail Unit ϵ

Or

Or

Fail Unit ϵ

Unit a

Or1

Or2

Fail Or2

Fail Success

Fig. 4 Trees of T [[a∗a∗]]a and first(T [[a∗a∗]]a)

with the regular expression r. However, in actual implementa-
tions based on backtracking, once a matching succeeds, the exe-
cution of matching stops and no other results are searched. There-
fore, we need to construct a tree that represents the execution until
the first success. To represent such trees, we revise the definition
of trees as follows.

ctree ::= Success
| Fail
| Or1 ctree
| Or2 ctree × ctree

In Σ∗ tree, Unit ϵ represents a successful matching since it con-
sumes the whole input string. From this consideration, we intro-
duce a function that transforms Σ∗ tree into ctree.

We first introduce the following function that checks whether
a subtree contains a successful match.

have succ (Unit w) =

 true if w = ϵ
false otherwise

have succ Fail = false
have succ (Or(t1, t2)) = have succ t1 ∨ have succ t2

Then, the following function transforms Σ∗ tree into ctree.

first (Unit w) =

 Success if w = ϵ
Fail otherwise

first Fail = Fail

first (Or(t1, t2)) =


Or1 (first t1)

if have succ t1 = true
Or2(first t1,first t2)

otherwise

For matching a string w with a regular expression r, first(T [[r]]w)
is the tree representing the execution steps until the first success-
ful match.
Example 3.7. Let us consider T [[a∗a∗]]a. Figure 4 shows
T [[a∗a∗]]a and first(T [[a∗a∗]]a). At the root of T [[a∗a∗]]a, Or is
transformed to Or1 because its left subtree contains Unit ϵ. Be-
cause other nodes do not contain Unit ϵ in their left subtrees, the
structure of T [[a∗a∗]]a is preserved by transforming Or into Or2.

4. Tree Transducers of Linear Size Increase
4.1 Tree Automata

A tree automaton is an extension of an automaton that works
on trees instead of strings [2]. A top-down tree automaton starts
its computation from the root of a tree and moves on to its leaves,
whereas a bottom-up tree automaton starts its computation from
the leaves of a tree and moves on to its root. In this paper, we

mainly use bottom-up tree automata.
Definition 4.1 (Bottom-up tree automata). A bottom-up tree au-
tomaton is a tuple (P,Σ, h) where P is a finite set of states, Σ is a
ranked alphabet, and h is a family of functions called a transition
function. For σ(k), hσ is a function of type Pk → P.

For better readability, if we have hσ(p1, . . . , pk) = p, we write
this transition as follows.

σ(p1, . . . , pk)→ p

The transition function h is extended to h̃ over TΣ as follows.

h̃(σ(t1, . . . , tk)) = hσ(h̃(t1), . . . , h̃(tk))

In this paper, we sometimes use a bottom-up tree automaton
(P,Σ, h,Q f ) with a set of final states Q f . We then say that t is
accepted by the tree automaton if h̃(t) ∈ Q f . A tree language is
regular if it is accepted by some tree automaton.
Example 4.2 (Tree automata). Let us consider a tree automa-
ton over a Boolean expression consisting of 0, 1, and disjunc-
tion. The automaton is described by (P,Σ, h,Q f ), where Σ =
{or(2), 0(0), 1(0)}, P = {p0, p1}, and h consists of the following
rules.

0→ p0, 1→ p1

or(p1, p0)→ p1, or(p0, p1)→ p1

or(p1, p1)→ p1, or(p0, p0)→ p0

We then have the following transition for or(or(1, 0), 1).

or(or(1, 0), 1) ⇒ or(or(p1, 0), 1)

⇒ or(or(p1, p0), 1) ⇒ or(p1, 1)

⇒ or(p1, p1) ⇒ p1

4.2 Tree Transducers
A tree transducer is an extension of a tree automaton that takes

a tree as input and produces a tree as output. As for tree au-
tomata, there are two variants, namely top-down and bottom-up
tree transducers. In this paper, we use an extension of top-down
tree transducers, called top-down tree transducers with regular
lookahead (or T R for short).

We now introduce some notations for the definition of top-
down tree transducers with regular lookahead. Let the set of vari-
ables {x1, x2, . . . , xk} be denoted by Xk. We regard a tuple con-
sisting of a state and a variable as a symbol of rank 0, and write
⟨Q, Xk⟩ = {⟨q, xi⟩ | q ∈ Q, xi ∈ Xk}.
Definition 4.3 (Top-down tree transducer with regular looka-
head). A top-down tree transducer with regular lookahead is a
tuple (Q, P,Σ,∆,Q0,R, h) where Q is a finite set of states, Σ is an
input ranked alphabet, ∆ is an output ranked alphabet, Q0 ⊆ Q
is a set of initial states, (P,Σ, h) is a bottom-up tree automaton,
called a lookahead automaton, and R is a set of transition rules.

Each transition rule in R has the following form:

⟨q, σ(x1, . . . , xk)⟩ → ζ ⟨p1, . . . , pk⟩

where ζ ∈ T⟨Q,Xk⟩∪∆ and ⟨p1, . . . , pk⟩ is the condition represented
by a tuple of states p1, . . . , pk of the lookahead automaton. When
the tree transducer reads σ at state q, the tree is rewritten to ζ if
h̃(xi) = pi for i ∈ [k].

4



Draft of a paper to appear in IPSJ-SIGPRO.

If the transition rule

⟨q, σ(x1, . . . , xk)⟩ → ζ ⟨p1, . . . , pk⟩

applies for all p1, . . . , pk ∈ P, it is written in short form as fol-
lows.

⟨q, σ(x1, . . . , xk)⟩ → ζ

In the following definition of the derivation relation for tree
transducers, a tuple consisting of a state and a tree is regarded as
a symbol of rank 0: ⟨Q,TΣ⟩ = {⟨q, t⟩ | q ∈ Q, t ∈ TΣ}. We now
define the derivation relation ⇒M of a top-down tree transducer
M with regular lookahead.
Definition 4.4 (Derivation relation). Let M =

(Q, P,Σ,∆,Q0,R, h) be a T R. Let us consider the following
transition rule of M.

⟨q, σ(x1, . . . , xk)⟩ → ζ ⟨p1, . . . , pk⟩

For ξ1, ξ2 ∈ T⟨Q,TΣ⟩∪∆, if the following conditions hold, then we
say ξ2 is derived by ξ1 and write ξ1 ⇒M ξ2.
( 1 ) ξ1/u = ⟨q, σ(s1, . . . , sk)⟩.
( 2 ) h̃(si) = pi (1 ≤ i ≤ k).
( 3 ) ξ2 = ξ1[u← ζ′] where ζ′ is the following tree.

ζ′ = ζ[⟨q′, xi⟩ ← ⟨q′, si⟩ | ⟨q′, xi⟩ ∈ ⟨Q, Xk⟩]

The translation realized by a tree transducer M is denoted by
τM . For t ∈ TΣ, τM(t) = {t′ ∈ T∆ | q ∈ Q0. ⟨q, t⟩ ⇒∗M t′}.
The translation is extended for a tree language T : τM(T ) =∪

t∈T τM(t).
Example 4.5 (Top-down tree transducer with regular lookahead).
For TΣ of Example 4.2, we consider a T R that translates a node
into its left subtree if the left subtree is evaluated to 1. The trans-
ducer is given by (Q, P,Σ,∆,Q0,R, h) where ∆ = Σ, Q = {q}, the
lookahead automaton (P,Σ, h) is that of Example 4.2, and R has
the following rules.

⟨q, 0⟩ → 0 , ⟨q, 1⟩ → 1
⟨q, or(x1, x2)⟩ → or(⟨q, x1⟩, ⟨q, x2⟩) ⟨p0, p0⟩
⟨q, or(x1, x2)⟩ → or(⟨q, x1⟩, ⟨q, x2⟩) ⟨p0, p1⟩
⟨q, or(x1, x2)⟩ → ⟨q, x1⟩ ⟨p1, p0⟩
⟨q, or(x1, x2)⟩ → ⟨q, x1⟩ ⟨p1, p1⟩

We now show the transition of or(or(0, 1), or(1, 0)) by the trans-
ducer.

⟨q, or(or(0, 1), or(1, 0))⟩
⇒ ⟨q, or(0, 1)⟩ (1)

⇒ or(⟨q, 0⟩, ⟨q, 1⟩) (2)

⇒ or(0, ⟨q, 1⟩) (3)

⇒ or(0, 1) (4)

(1) Because the tree has the form ⟨q, or(x1, x2)⟩, the transition
is determined by h̃(or(0, 1)) = p1 and h̃(or(1, 0)) = p1. The
tree is therefore rewritten by the following rule.

⟨q, or(x1, x2)⟩ → ⟨q, x1⟩ ⟨p1, p1⟩

(2) Because h̃(0) = p0 and h̃(1) = p1, the tree is rewritten by the

following rule.

⟨q, or(x1, x2)⟩ → or(⟨q, x1⟩, ⟨q, x2⟩) ⟨p0, p1⟩

(3) The tree is rewritten by the rule ⟨q, 0⟩ → 0.
(4) The tree is rewritten by the rule ⟨q, 1⟩ → 1.

If the size of a tree obtained by the translation realized by a tree
transducer M is linearly bounded with respect to the size of the
input tree, we say that M is of linear size increase: there exists
c ∈ N such that size(t′) ≤ c · size(t) for any t ∈ TΣ and t′ ∈ τM(t).

4.3 Finite Copying
We introduce a restriction of T R, called finite copying. If a tree

transducer is finite copying, then it is of linear size increase [7].
Informally, a tree transducer M is finite copying if every subtree
t/u for u ∈ V(t) is translated boundedly many times by M for
any tree t. For the precise definition, we need to define the state
sequence at a subtree t/u that is the sequence of states translat-
ing the subtree t/u. To define state sequences, we introduce the
extension of a T R that reads a state as an input symbol.
Definition 4.6 (Extension. Definition4.1 [7]). Let M =

(Q, P,Σ,∆,Q0,R, h) be a T R. The extension of M, denoted by
M̂, is a T R (Q, P, Σ̂, ∆̂,Q0, R̂, ĥ) where Σ̂ = Σ ∪ {p(0) | p ∈ P},
∆̂ = ∆ ∪ ⟨⟨Q, P⟩⟩, R̂ = R ∪ {⟨q, p⟩ → ⟨⟨q, p⟩⟩ | ⟨q, p⟩ ∈ ⟨Q, P⟩},
ĥp() = p for p ∈ P, and ĥΣ(p1, . . . , pk) = hσ(p1, . . . , pk) for
σ ∈ Σ(k), p1, . . . , pk ∈ P.

We then define state sequences by using Definition 4.6.
Definition 4.7 (State sequence. Definition4.4 [7]). Let M =

(Q, P,Σ,∆,Q0,R, h) be a T R, t ∈ TΣ and u ∈ V(t). Let p = h(t/u),
ξ = M̂(s[u← p]) ∈ T⟨⟨Q,{p}⟩⟩∪∆, and {v ∈ V(ξ) | ξ[v] ∈ ⟨⟨Q, {p}⟩⟩} =
{v1, . . . , vn} where v1 < . . . < vn. Then, the state sequence
stsM(t, u) of t at u is the sequence of states q1 · · · qn such that
ξ[vi] = ⟨⟨qi, p⟩⟩ for i ∈ [n].

The restriction of finite copying is defined by using Definition
4.7.
Definition 4.8 (Finite copying. Definition4.5 [7]). A T R M is fi-
nite copying if there exists c ∈ N such that |stsM(t, u)| ≤ c for any
t ∈ TΣ and u ∈ V(t).
Theorem 4.9 (Lemma 4.10(i)[7]). It is decidable whether or not
T R M is finite copying.

Proof. In [7], a macro tree transducer is used to construct a
state sequence represented by TMON(Q). However, in this paper,
we construct a state sequence represented by TS TR(Q) by using
a bottom-up tree transducer. This is because we do not have to
use a macro tree transducer. For the definition of bottom-up tree
transducers, please refer to [5].

Let M = (Q, P,Σ,∆,Q0,R, h). The bottom-up tree trans-
ducer N that constructs a state sequence is given by ({r},∆ ∪
⟨⟨Q, P⟩⟩, S TR(Q), {r},R′). For ⟨⟨q, p⟩⟩ ∈ ⟨⟨Q, P⟩⟩, and δk ∈ ∆(k),
R′ contains the following transition rules.

⟨⟨q, p⟩⟩ → r(q)
δ0 → r(ϵS )
δ1(r(x)) → r(x)
δk(r(x1), . . . , r(xk))

→ r(•(x1, •(x2, . . . , •(xk−1, xk) . . .)))

For t ∈ TΣ, u ∈ V(t), τN(τM̂(t[u ← h(t/u)])) is stsM(t, u) repre-

5



Draft of a paper to appear in IPSJ-SIGPRO.

sented by S TR(Q). However, the trees in τN(τM̂(t[u ← h(t/u)]))
may not be compact and may have some redundancy. We there-
fore make them compact by using Lemma 4.2[4] to discuss its
finiteness. Then, M is finite copying if and only if compact
τN(τM̂(L)) is finite where L = {t[u ← h(t/u)] | t ∈ TΣ, u ∈ V(t)}.
Because L is regular, it is decidable whether or not τN(τM̂(L)) is
finite by using Lemma 3.8 [7].

5. Tree Transducer Simulating Regular Ex-
pression Matching

From a regular expression, we construct a tree transducer that
simulates its matching and outputs the tree introduced in Sec-
tion 3 that abstracts the execution steps of regular expression
matching based on backtracking. If the transducer is of linear size
increase, the running time of the matching for the regular expres-
sion is determined as linear. The construction of automata and
transducers in this section is based on the construction of Frisch
and Cardelli [8].

5.1 Construction of Automata by Frisch and Cardelli
In preparation for the construction of the tree transducer, we re-

view the construction of an automaton from a regular expression
by Frisch and Cardelli [8].

We first define notations for list operations. We write x :: l for
the list obtained by adding the element x at the beginning of the
list l and l :: x for the list obtained by adding x at the end of l. The
operation :: is extended for a set of lists: x :: S = {x :: l | l ∈ S }.

We introduce locations of a regular expression: a location is a
sequence consisting of {fst, snd, lft, rgt, star}. The set of locations
in a regular expression r, denoted by λ(r), is defined as follows.

λ(ϵ) = {[]}
λ(c) = {[]}
λ(r1r2) = {[]} ∪ fst :: λ(r1) ∪ snd :: λ(r2)
λ(r1|r2) = {[]} ∪ lft :: λ(r1) ∪ rgt :: λ(r2)
λ(r∗1) = {[]} ∪ star :: λ(r1)

The subexpression of r at a location l, denoted by r.l, is defined
as follows.

r.[] = r
(r1r2).(fst :: l) = r1.l
(r1r2).(snd :: l) = r2.l
(r1|r2).(lft :: l) = r1.l
(r1|r2).(rgt :: l) = r2.l
(r∗1).(star :: l) = r1.l

After matching a string with a subexpression r0.l, the rest of the
string is matched with the successor of the subexpression. The
successor of a subexpression is defined as follows:

succ([]) = q f

succ(l :: fst) = l :: snd
succ(l :: snd) = succ(l)
succ(l :: lft) = succ(l)
succ(l :: rgt) = succ(l)
succ(l :: star) = l

where q f denotes the end of successful matching.
We now show the construction of an automaton from a regular

expression, following Frisch and Cardelli [8].
Definition 5.1 (Construction of an Automata from a Regular Ex-
pression). A nondeterministic automaton (Q,Σ ∪ {ϵ}, q f , E) is
constructed from a regular expression r0 where the set of states Q
is λ(r0) ∪ {q f } and the transition relation E ⊆ Q × (Σ ∪ {ϵ}) × Q
contains the following rules.

(l, c, succ(l)) ∈ E if r0.l = c
(l, ϵ, succ(l)) ∈ E if r0.l = ϵ
(l, l :: fst) ∈ E if r0.l = r1r2

(l, l :: lft) ∈ E, (l, l :: rgt) ∈ E if r0.l = r1|r2

(l, l :: star) ∈ E, (l, succ(l)) ∈ E if r0.l = r∗1

Let L(q) be the set of strings accepted by the automaton of
Definition 5.1, starting from an initial state q ∈ Q.
Lemma 5.2 (Lemma 2 [8]). For all l ∈ λ(r0), we have L(l) =
L(r0.l)L(succ(l)). In particular, L([]) = L(r0).

5.2 Construction of Tree Transducers
In Section 3, we formulated T [[r]] that simulates regular ex-

pression matching and outputs a tree that abstracts its execution
steps. In this section, we construct a transducer that outputs the
tree. A string w ∈ Σ∗ is considered as a tree over MON(Σ). For
example, the string abc is a tree a(b(c(ϵM))).
Definition 5.3 (Tree Transducer Simulating Regular Expres-
sion Matching). We define a top-down tree transducer Mr0 =

(Q,Σ,∆,Q0,R) that searches all possible matchings with regu-
lar expression r0. The input alphabet Σ is given by Σ = MON(Σ′)
for a set of characters Σ′. The output alphabet ∆ is given by ∆ =
{Success(0),Fail(0),Or(2)}. The set of states is Q = λ(r0)∪{q f }, the
set of initial states is Qd = {[]}, and the set of transition rules R
has the following rules.
• Case l ∈ Q.

⟨l, c(x)⟩ → ⟨succ(l), x⟩
⟨l, c′(x)⟩ → Fail
⟨l, ϵM⟩ → Fail

 if r0.l = c

⟨l, x⟩ → ⟨succ(l), x⟩ if r0.l = ϵ
⟨l, x⟩ → ⟨l :: fst, x⟩ if r0.l = r1r2

⟨l, x⟩ → Or(⟨l :: lft, x⟩, ⟨l :: rgt, x⟩) if r0.l = r1|r2

⟨l, x⟩ → Or(⟨l :: star, x⟩, ⟨succ(l), x⟩) if r0.l = r∗1

• Case: q f ∈ Q.
⟨q f , ϵ⟩ → Success

The top-down tree transducer Mr0 constructed from a regular
expression r0 reads the tree representation of an input string w
and outputs the tree that abstracts the computation matching w
with r0.

It should be noted that the construction in Definition 5.3 con-
tains ϵ-transitions and therefore does not conform to Definition
5.3 of top-down tree transducers with regular lookahead. How-
ever, the transition rules of Definition 5.3 have no loops of ϵ-
transitions and can therefore be transformed easily to give a trans-
ducer without ϵ-transitions.
Example 5.4 (Tree Transducer Simulating Regular Expression
Matching). We apply the top-down transducer Mr constructed
from r = ab|c∗ to an input string ab.

6



Draft of a paper to appear in IPSJ-SIGPRO.

The set of states is Q = {[], [lft], [lft, fst], [lft, snd], [rgt], [rgt, star]}
and the set of transition rules R contains the following rules.

⟨[], x⟩ → Or(⟨[lft], x⟩, ⟨[rgt], x⟩)
⟨[lft], x⟩ → ⟨[lft, fst], x⟩
⟨[lft, fst], a(x)⟩ → ⟨[lft, snd], x⟩
⟨[lft, snd], b(x)⟩ → ⟨q f , x⟩
⟨[rgt], x⟩ → Or(⟨[rgt, star], x⟩, ⟨q f , x⟩)
⟨[rgt, star], c(x)⟩ → ⟨[rgt], x⟩
⟨q f , ϵM⟩ → Success

where the transitions whose right hand side is Fail are omitted.
The following is the transition of the transducer for an input

ab.

⟨[], a(b(ϵM))⟩
⇒Mr Or(⟨[lft], a(b(ϵM))⟩, ⟨[rgt], a(b(ϵM))⟩)
⇒Mr Or⟨[lft, fst], a(b(ϵM))⟩,

⟨[rgt], a(b(ϵM))⟩)
⇒Mr Or(⟨[lft, snd], b(ϵM)⟩,

⟨[rgt], a(b(ϵM))⟩)
⇒Mr Or(⟨q f , ϵM⟩,

⟨[rgt], a(b(ϵM))⟩)
⇒Mr Or(Success,

⟨[rgt], a(b(ϵM))⟩)
⇒Mr Or(Success,

Or(⟨[rgt, star], a(b(ϵM))⟩, ⟨q f , a(b(ϵM))⟩))
⇒Mr Or(Success,

Or(Fail, ⟨q f , a(b(ϵM))⟩))
⇒Mr Or(Success,Or(Fail,Fail))

The top-down transducer constructed by Definition 5.3 outputs
the tree that abstracts the execution steps searching all possible
matchings. To simulate matching based on backtracking, we ex-
tend the construction in Definition 5.3 by using regular lookahead
so that the output of the transition abstracts the execution that
stops at the first successful matching. To simplify the presenta-
tion, we formulate the transition rules of the top-down transducer
with regular lookahead in the following form. For a tree regular
language L, we write

⟨q, σ(x)⟩ x∈L−→ ξ

for a transition rule that rewrites ⟨q, σ(x)⟩ into ξ when x ∈ L.
Definition 5.5 (Tree Transducer Simulating Matching Based on
Backtracking). For a regular expression r0, we define a top-down
tree transducer M′r0

= (Q,Σ,∆′,Q0,R′) with regular lookahead
that simulates matching based on backtracking. The output al-
phabet is revised to ∆′ = {Success(0),Fail(0),Or1

(1),Or2
(2)}. For

r1|r2 or r∗1, if the branch with a higher priority succeeds, it outputs
Or1, containing only the subtree corresponding to that branch. If
the branch with a higher priority fails, it outputs Or2, containing
the two subtrees corresponding to both possibilities. The transi-
tion rules of R are revised so that R′ has the following rules for
the cases r0.l = r1|r2 and r0.l = r∗1.

• Case r0.l = r1|r2.

⟨l, x⟩ x∈L(l::lft)−→ Or1(⟨l :: lft, x⟩)

⟨l, x⟩ x<L(l::lft)−→ Or2(⟨l :: lft, x⟩, ⟨l :: rgt, x⟩)

• Case r0.l = r∗1.

⟨l, x⟩ x∈L(l::star)−→ Or1(⟨l :: star, x⟩)

⟨l, x⟩ x<L(l::star)−→ Or2(⟨l :: star, x⟩, ⟨succ(l), x⟩)

Example 5.6 (Tree Transducer Simulating Matching Based on
Backtracking). We apply the top-down transducer M′r con-
structed from r = ab|c∗ to an input string ab.

The set of transition rules of M′r is obtained by revising the
rules in Example 5.4 to give the following rules for the transi-
tions from states [] and [rgt].

⟨[], x⟩ x∈L([lft])−→ Or1(⟨[lft], x⟩)
⟨[], x⟩ x<L([lft])−→ Or2(⟨[lft], x⟩, ⟨[rgt], x⟩)
⟨[rgt], x⟩

x∈L([rgt,star])
−→ Or1(⟨[rgt, star], x⟩)

⟨[rgt], x⟩
x<L([rgt,star])
−→ Or2(⟨[rgt, star], x⟩, ⟨q f , x⟩)

The following is the transition of the transducer for an input
ab.

⟨[], a(b(ϵM))⟩
⇒M′r Or1(⟨[lft], a(b(ϵM))⟩)
⇒M′r Or1(⟨[lft, fst], a(b(ϵM))⟩)
⇒M′r Or1(⟨[lft, snd], b(ϵM)⟩)
⇒M′r Or1(⟨q f , ϵM⟩)
⇒M′r Or1(Success)

In Example 5.4, there are leaves to the right of Success. On
the other hand, the output of M′r has no subtree to the right of
Success.

In Definition 5.5, the lookahead automaton was not explic-
itly given, to simplify the definition. In our implementation, we
construct the lookahead automaton by constructing a top-down
tree automaton from r0 and applying the subset construction to
the bottom-up tree automaton equivalent to the top-down tree
automaton. Let (P,Σ, h) be the lookahead tree automaton con-
structed in this manner and let us consider the following transition
rule.

⟨l, x⟩ x∈L(l::star)−→ Or1(⟨l :: star, x⟩)

We then have the following transition rules for p ∈ P such that
l :: star ∈ p.

⟨l, x⟩ → Or1(⟨l :: star, x⟩) ⟨p⟩

The top-down tree transducer with regular lookahead con-
structed from a regular expression r in Definition 5.5 simulates
regular expression matching based on backtracking and outputs a
tree that abstracts its execution steps. By then checking whether
M′r is of linear size increase, it can be decided whether the run-
ning time of the matching is linear with respect to the length of
the input string. Engelfriet and Maneth showed that it is decid-
able to check whether a total deterministic transducer is finite

7



Draft of a paper to appear in IPSJ-SIGPRO.

copying [7]. Although the construction of the transducer in this
section contains ϵ-transitions, there is exactly one possible tran-
sition for all states because of lookahead. This makes the trans-
ducer total and deterministic. We can therefore apply Theorem
4.9.

6. Implementation and Experimental Results
6.1 Implementation

Based on Sections 4 and 5, we implemented an analyzer of
regular expressions in OCaml. It consists of about 6, 000 lines
of code including empty lines and comments. It uses the parser
of Sakuma et al. [15], and supports the syntax of Perl-compatible
regular expressions, including the following extensions of regular
expressions.

r ::= · · ·
| [c1c2 . . . cn] (character class)
| r? (optional)
| r∗? (lazy repetition)
| r+ (one or more repetitions)
| r{n}{m} (repetition between n and m)

Lazy repetition r∗? matches a repetition of r for which a shorter
matching is given a higher priority. It is expanded as r∗? = ϵ |rr∗?.
Other extensions such as lookahead, atomic grouping, and back-
reference are not supported by our implementation. In our ana-
lyzer, a regular expression r not starting with ˆ, which matches
the start of a line, is treated as .∗?r and a regular expression r not
ending with $, which matches the end of a line, is treated as r.∗.

If the top-down tree transducer with regular lookahead con-
structed from a regular expression r is of linear size increase, the
running time of matching for r is linear with respect to the length
of the input string. Furthermore, if a tree transducer is finite copy-
ing, then the transducer is of linear size increase. It is therefore
sound to check the time linearity of regular expression matching
by checking whether the transducer is finite copying.

For top-down tree transducers with regular lookahead, finite
copying is a sufficient condition of linear size increase, but not a
necessary condition, in general. To check whether a transducer
is of linear size increase, Engelfriet and Maneth [7] introduced a
subclass of transducers called input proper. A transducer is in-
put proper if any state of the transducer produces infinitely many
outputs. They showed that, for this subclass, linear size increase
implies finite copying and any transducer can be translated to an
equivalent input proper transducer. These give a decision proce-
dure for linear size increase.

Because our implementation does not include the translation
and only checks finite copying, it is not a sound and complete
checker. However, a transducer constructed from a regular ex-
pression must output either Or1 or Or2 when it reads a bounded
number of characters. Under these conditions, we believe that
linear size increase implies finite copying and therefore that our
implementation is sound and complete without the translation. A
formal proof of this will be addressed in our future work.

In the following, we show how to check the time linearity of
regular expression matching in our implementation into more de-
tails. For the definitions of various subclasses of tree transducers,

Table 1 Subclasses of Tree Transducers

Subclass Description
LB−FS T Linear bottom-up tree transducers
T R−FS T Top-down tree transducers with regular lookahead
QREL Finite state relabeling
LHOM Linear homomorphism [16]

please refer to [5], [6].
( 1 ) The top-down tree transducer M′r with regular lookahead is

constructed from a regular expression r using Definition 5.5.
( 2 ) If the state sequences obtained from its extension M̂′r are fi-

nite, then M′r is finite copying.
We compose the two bottom-up tree transducers N of The-
orem 4.9 and C below. By applying N, we obtain the state
sequences from τM′r (w) for an input string w. The transducer
C normalizes trees on S TR(Σ) to compact trees. It is given
by ({qϵ , q}, S TR(Q), S TR(Q), {qϵ , q},RC) where Q is the set
of states of M′r and RC has the following transition rules.

ϵS → qϵ(ϵS )
σ → q(σ) σ ∈ Q

•(qϵ(x1), qϵ(x2)) → qϵ(ϵS )
•(qϵ(x1), q(x2)) → q(x2)
•(q(x1), qϵ(x2)) → q(x1)
•(q(x1), q(x2)) → q(•(x1, x2))

For the class of linear bottom-up tree transducers LB−FS T ,
LB−FS T ◦ LB−FS T ⊆ LB−FS T [5]. N ◦ C can therefore
be constructed as a linear bottom-up tree transducer.
If range(τN◦C ◦ τM̂′r ) is finite, then M̂′r is finite copying. To
check the finiteness of range(τN◦C ◦ τM̂′r ), we compose N ◦C
with a bottom-up transducer P that nondeterministically out-
puts a path from the root to some leaf for a tree over S TR(Q).
P is given by ({q}, S TR(Q),MON(S TR(Q)), {q},RP) where
RP has the following transition rules.

σ → q(σ(ϵM)) σ ∈ S TR(Q)(0)

•(q(x1), q(x2)) → q(σ(x1))
•(q(x1), q(x2)) → q(σ(x2))

Since P is also linear, N ◦ C ◦ P can be constructed as a
linear bottom-up transducer. We constructed this composed
transducer manually.

( 3 ) For the class T R−FS T of top-down tree transducers with
regular lookahead, T R−FS T ◦ LB−FS T ⊆ T R−FS T [6].
With this result, we can construct M̂′r ◦N ◦C ◦P as T R−FS T
as follows.

(a) By using LB−FS T ⊆ QREL ◦ LHOM [5], we decompose
N ◦ C ◦ P into two transducers Mqrel and Mlhom such that
Mqrel ◦ Mlhom = N ◦C ◦ P.

(b) By using T R−FS T ◦ QREL ⊆ T R−FS T [6], we construct
M̂′r ◦ Mqrel as T R−FS T .

(c) By using T R−FS T ◦ LHOM ⊆ T R−FS T [6], we construct
M̂′r ◦ Mqrel ◦ Mlhom as T R−FS T .

( 4 ) We check whether range(τM′r ) is finite as follows. M̂′r◦Mqrel◦
Mlhom is a tree transducer from and to trees representing
strings. It can therefore be converted into a transducer T
with regular lookahead over strings. It is then converted to a

8



Draft of a paper to appear in IPSJ-SIGPRO.

string transducer without lookahead by the subset construc-
tion.

( 5 ) We construct an automaton A whose language is
range(τM̂′r◦Mqrel◦Mlhom

). If T has a transition from q to q′

that consumes input w and produces output v, then A has a
corresponding transition from q to q′ that consumes v. The
language of A is infinite if and only if there is a loop that
is reachable from the initial states and to some final state.
We therefore check the finiteness of range(τM̂′r◦Mqrel◦Mlhom

) by
removing states that are not reachable from the initial states
or to any final state and by checking for the existence of
a loop. If it is finite, M′r is finite copying and the running
time of matching for the regular expression r is therefore
determined to be linear with respect to the length of the
input.

6.2 Experimental Results
We conducted experiments that checked the time linearity of

matching for regular expressions used in several existing pro-
grams. We applied our implementation to 393 regular expressions
used in five programs: PHP-Fusion, phpMyAdmin, SquirrelMail,
TorrentFlux, and XOOPS. We configured our implementation so
that it stops and reports a time-out if it cannot decide the linearity
within 900 seconds. Our implementation showed that 47 regu-
lar expressions had nonlinear running times and that 7 regular
expressions caused a time-out. Results for several regular expres-
sions are shown in Table 2. It should be noted that the running
time for a regular expression that is decided as nonlinear might
actually be linear for real implementations of regular matching
because various optimizations might be applied. For example, al-
though the tree corresponding to matching an with (aa∗)∗b has the
structure shown in Example 3.6 and its size is exponential in n,
its running time on Perl is linear.

In Table 2, r1 matches a string that consecutively has
<!DOCTYPE, any number of non-alphanumerical characters, and
XHTML or HTML. Since \W is a character class that matches non-
alphanumerical characters, \W* does not match <!DOCTYPE. The
running time of r1 is therefore linear.

r2 matches a string that is partitioned into six arbitrary sub-
strings separated by /. After .* matches the whole input string,
/ is located by backtracking. Because / is located in linear time
and the matching of r2 repeats it, its running time is linear. If we
were to remove ˆ, then a subexpression .*?.* would implicitly
appear. Its running time would be nonlinear.

r3 matches a substring that starts with </applet or </link,
then has an arbitrary number of characters except >, and ends
with >. The matching of this regular expression has a nonlinear
running time for a string of the form </link</link. . .</link.
We have checked the running times using PCRE for strings that
contain n repetitions of </link. The running times were 0.26 s
for n = 10, 000, 1.0 s for n = 20, 000, and 4.1 s for n = 40, 000.
This confirms the nonlinearity of the running time.

r4 matches a substring comprising zero or one $ character, then
two or more uppercase alphabetical characters, then zero or one
$ character, and two or more numerical characters. The running
time of this regular expression is nonlinear for strings compris-

ing uppercase alphabetical characters. If we ignore [$]?, the ex-
pression starts with .*?[A-Z]+. The matching of this part then
causes nonlinear running time when the matching fails. We have
checked the running times using PCRE for strings that contain n
repetitions of A. The running times were 0.61 s for n = 5, 000,
3.3 s for n = 10, 000, and 14 s for n = 20, 000. This confirms that
the running time is nonlinear.

r5 matches a string that contains BAD or NO. Because it does
not start with ˆ, it is treated as starting with .*?.*. It therefore
has nonlinear running time for strings containing neither BAD nor
NO. We have checked the running times for n repetitions of A.
Using PCRE, we obtained 0.23 s for n = 2, 000, 000, 0.46 s for
n = 4, 000, 000s, and 0.92 s for n = 8, 000, 000. Using Python,
we obtained 1.9 s for n = 10, 000, 7.5 s for n = 20, 000, and 30
s for n = 40, 000. These results can be interpreted in terms of
PCRE applying some optimization to .*?.*.

r6 matches a substring that starts with
content-transfer-encoding:, then has an arbitrary number
of space characters, and ends with a string comprising alpha-
betical characters and at most one -. This regular expression
contains many subexpressions of the form r∗ and the matching
was conducted with an option that makes it case-insensitive. The
tree transducer with regular lookahead constructed from r6 had
82 states and its lookahead automaton had 63 states. The number
of the states of a lookahead automaton has an exponential effect
on the time to decide whether the transducer is finite copying.
This causes a time-out by exceeding the limit of 900 s.

7. Related Work
Kirrage et al. developed a method to check whether the run-

ning time of a regular expression matching is exponential [13].
They introduced a nondeterministic abstract machine that simu-
lates regular expression matching. If there is a string that has two
different sequences of matching steps for this abstract machine,
it is reported that the running time for the regular expression is
exponential. However, this method does not consider priorities
in matching, being based on the operational semantics that non-
deterministically searches all the possibilities for matching. This
causes false-positives for regular expression matching based on
backtracking. For example, the running time for (.*a.*|a)*
is reported as ‘exponential’ in their method even if it is actually
linear. In constrast, the present paper is based on the semantics
that precisely models priorities in regular expression matching
and does not cause such false-positives. For (.*a.*|a)*, it de-
cides that it has a linear running time because any string contain-
ing more than one a is matched with .*a.*, causing the matching
of a on the right-hand side of | to always fail.

Pioneering work on the size of the output of a tree transducer
was done by Aho and Ullman [1]. They studied the size increase
caused by a generalized syntax-directed translation, which is a
variant of a top-down tree transducer, and showed that it is de-
cidable whether the size increase by the translation is O(ni) for
a nonnegative integer i, and whether it is exponential. The re-
sults of Engelfriet and Maneth [7] extend these results to macro
tree transducers for linear size increase. The tree transducer con-
structed from a regular expression in this paper intrinsically re-

9



Draft of a paper to appear in IPSJ-SIGPRO.

Table 2 Experimental Results

Regular expression Result Running time
r1 =<!DOCTYPE\W*X?HTML linear 15.8 s
r2 =ˆ.*\/.*\/.*\/.*\/.*\/.*$ linear 757 s
r3 =</*(applet|link|style|script|iframe|frame|frameset)[ˆ>]*> nonlinear 373 s
r4 =([$]?[A-Z]+)([$]?\d+) nonlinear 1.30 s
r5 =(.*)(BAD|NO)(.*)$ nonlinear 0.970 s
r6 =ˆ.*(content-transfer-encoding:)\s*(\w+-?(\w+)?).* time-out 900 s

quires lookahead and it is therefore not possible to apply the re-
sults of Aho and Ullman to the transducer. However, we believe
that it will be possible to extend their method to transducers with
regular lookahead and to check their other properties related to
size increase.

For implementations of regular expression matching based on
the theory of automata, it has been considered difficult to imple-
ment submatching that properly respects priorities in matching.
Recently, several methods that respect Perl-compatible priorities
have been proposed [3], [8], [9]. In particular, the regular expres-
sion library RE2 [11], which is based on automata, has attracted
much attention. However, we do not consider that all the issues
of regular expression matching have been solved in such imple-
mentations. For example, regular expressions in programming
languages include backreference that cannot be handled by the
theory of automata. In addition, it is common to use a fixed num-
ber of repetitions, defined as follows.

r ::= · · ·
| rn (fixed number of repetition)

An implementation based on automata such as RE2 constructs an
automaton by unfolding the above repetition. It may therefore
construct an automaton whose size is exponential with respect to
the size of a regular expression. This blowup cannot be avoided
even if the implementation is based on NFA.

8. Conclusion
For regular expression matching based on backtracking, we

have developed a method to check whether the matching of a
given regular expression can be performed in linear time with
respect to the length of the input string. We construct a top-down
tree transducer with regular lookahead from a regular expression.
For a given input string, this transducer outputs the tree that rep-
resents the execution steps matching the string with the regular
expression. It is then possible to check the time linearity of a
regular expression by checking whether or not the constructed
transducer is of linear size increase.

A particular contribution of this paper is that we apply a theo-
retical result for tree transducers on linear size increase to a prac-
tical problem on regular expression matching. This problem is of
great interest in practice because the matching of a regular expres-
sion with nonlinear running time may cause DoS vulnerabilities
or pervert the behavior of matching for implementations with a
limit on the number of execution steps.

Three issues should be addressed in future work. The first is-
sue is to prove that linear size increase implies finite copying for
a transducer constructed from a regular expression. We believe
that this holds because the transducer must output some symbol

when it reads boundedly many characters. The second issue is to
generate example inputs for a regular expression with nonlinear
running time. We would like to generate an example input that
shows nonlinear behavior by the regular expression. The third
issue involves about the construction of a tree transducer for a
regular expression that includes r∗1 where ϵ ∈ L(r1). The naive
application of the method in this paper to such a regular expres-
sion causes nontermination by our decision procedure.

References
[1] Aho, A. V. and Ullman, J. D.: Translations on a Context-free Gram-

mar, Inform. and Control, Vol. 19, pp. 439–475 (1971).
[2] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard,

F., Lugiez, D., Tison, S. and Tommasi, M.: Tree Automata
Techniques and Applications, Available on: http://www.grappa.
univ-lille3.fr/tata (2007). release October, 12th 2007.

[3] Cox, R.: Implementing Regular Expressions (2007). http://swtch.
com/˜rsc/regexp/.

[4] Drewes, F. and Engelfriet, J.: Decidability of the Finiteness of Ranges
of Tree Transductions, Inform. and Comput., Vol. 145, pp. 1–50
(1998).

[5] Engelfriet, J.: Bottom-up and Top-down Tree Transformations - a
Comparison, Math. Syst. Theory, Vol. 9, pp. 198–231 (1975).

[6] Engelfriet, J.: Top-down Tree Transducers with Regular Look-ahead,
Math. Syst. Theory, Vol. 10, pp. 289–303 (1977).

[7] Engelfriet, J. and Maneth, S.: Macro Tree Translations of Linear Size
Increase are MSO Definable, SIAM J. Comput, Vol. 32, pp. 950–1006
(2003).

[8] Frisch, A. and Cardelli, L.: Greedy Regular Expression Matching,
ICALP 2004, pp. 618–629 (2004). LNCS 3142.

[9] Haber, S., Horne, W., Manadhata, P., Mowbray, M. and Rao, P.: Ef-
ficient Submatch Extraction for Practical Regular Expressions, LATA,
pp. 323–343 (2013). LNCS 7810.

[10] Hazel, P.: PCRE Man Page. http://www.pcre.org/pcre.txt.
[11] Hosting, G. P.: re2: An Efficient, Principled Regular Expression Li-

brary. http://code.google.com/p/re2/.
[12] IHG: Control.Monad.SearchTree. http://hackage.

haskell.org/package/tree-monad-0.3/docs/
Control-Monad-SearchTree.html#t:SearchTree.

[13] Kirrage, J., Rathnayake, A. and Thielecke, H.: Static Analysis for
Regular Expression Denial-of-Service Attacks, International Con-
ference on Network and System Security (NSS 2013), pp. 135–148
(2013). LNCS 7873.

[14] OWASP: Regular Expression Denial of Service - ReDoS (2012).
https://www.owasp.org/index.php/Regular_expression_
Denial_of_Service_-_ReDoS.

[15] Sakuma, Y., Minamide, Y. and Voronkov, A.: Translating Regu-
lar Expression Matching into Transducers, Journal of Applied Logic,
Vol. 10, No. 1, pp. 32–41 (2012).

[16] Thatcher, J. W.: Generalized2 Sequential Machine Maps, J. Comp.
Syst. Sci., Vol. 4, pp. 339–367 (1970).

10



Draft of a paper to appear in IPSJ-SIGPRO.

Satoshi Sugiyama received his B.Sc. de-
gree in information science from Univer-
sity of Tsukuba in 2012. He is cur-
rently on the master course at University
of Tsukuba. His research interests include
software verification and the theory of au-
tomata and formal languages.

Yasuhiko Minamide is an Associate
Professor in the Department of Com-
puter Science, University of Tsukuba.
He received his M.Sc. and Ph.D. from
Kyoto University in 1993 and 1997. His
research interests include the theory of
programming languages and software
verification. He is a member of ACM,

IPSJ, and JSSST.

11


