
Typed Closure Conversion�

Yasuhiko Minamide y

Research Institute for Mathematical Sciences

Kyoto University

Kyoto ������� Japan

nan�kurims�kyoto�u�ac�jp

Greg Morrisett

School of Computer Science

Carnegie Mellon University

Pittsburgh� PA ����	�	
��

jgmorris�cs�cmu�edu

Robert Harper

School of Computer Science

Carnegie Mellon University

Pittsburgh� PA ����	�	
��

rwh�cs�cmu�edu

Abstract

Closure conversion is a program transformation used by
compilers to separate code from data� Previous accounts
of closure conversion use only untyped target languages� Re

cent studies show that translating to typed target languages
is a useful methodology for building compilers� because a
compiler can use the types to implement e�cient data rep

resentations� calling conventions� and tag
free garbage col

lection� Furthermore� type
based translations facilitate se

curity and debugging through automatic type checking� as
well as correctness arguments through the method of logical
relations�
We present closure conversion as a type
directed� and

type
preserving translation for both the simply
typed and
the polymorphic �
calculus� Our translations are based on
a simple �closures as objects� principle� higher
order func

tions are viewed as objects consisting of a single method
�the code� and a single instance variable �the environment��
In the simply
typed case� the Pierce
Turner model of ob

ject typing where objects are packages of existential type
su�ces� In the polymorphic case� more careful tracking of
type sharing is required� We exploit a variant of the Harper

Lillibridge �translucent type� formalism to characterize the
types of polymorphic closures�

� Introduction

Closure conversion ���� 	�� �� ��� ��� �� 	�� �� is a program
transformation that achieves a separation between code and

�This research was sponsored in part by the Advanced Research
Projects Agency CSTO under the title �The Fox Project� Advanced
Languages for Systems Software�� ARPA Order No� C���� issued
by ESC	ENS under Contract No� F
��
�����C������ and in part
by the National Science Foundation under Grant No� CCR����
����
and in part by the Isaac Newton Institute for Mathematical Sciences�
Cambridge� England� The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing o�cial policies� either expressed or implied� of ARPA
or the U�S� Government� Any opinions� �ndings� and conclusions
or recommendations expressed in this material are those of the au�
thors and do not necessarily re�ect the views of the National Science
Foundation�

yThis research was performed while the �rst author was visiting
the Fox Project at Carnegie Mellon University�

data� Functions with free variables are replaced by code ab

stracted on an extra environment parameter� Free variables
in the body of the function are replaced by references to the
environment� The abstracted code is partially applied to an
explicitly constructed environment providing the bindings
for these variables� This partial application of the code to
its environment is in fact suspended until the function is ac

tually applied to its argument� the suspended application�
called a closure� is a data structure consisting of a piece of
pure code and a representation of its environment�
A critical decision in closure conversion is the choice

of representation for the environment � whether to use a
�at FAM
like ���� linked CAM
like ���� or hybrid representa

tion �	��� The choice of representation is in�uenced by a de

sire to minimize closure creation time� the space consumed
by the environment� and the time to access a variable in
the environment �	�� 	��� An important property of closure
conversion is that the representation of the environment is
private to the closure� This a�ords considerable �exibility
in the representation of environments and is thus exploited
to good advantage by Shao and Appel �	�� and Wand and
Steckler �	���
Previous accounts consider closure conversion as a trans

formation to untyped terms� even if the source language is
typed �	�� ��� �� 	�� ��� This is adequate for compilers that
make little or no use of types in the back end or at run
time� However� when compiling typed languages� it is often
advantageous to propagate type information through each
stage of the compiler� and to make use of types at link
 or
even run time� For example� Leroy�s representation analy

sis ��
� 	�� uses types to determine procedure calling conven

tions� and Ohori�s record compilation ���� uses a representa

tion of types at run time to access components of a record�
Compilation strategies for polymorphic languages� such as
those proposed by Morrison et al� ���� and Harper and Mor

risett ����� rely on analyzing types at run time to support
unboxed representations and non
parametric operators� in

cluding printing and structural equality� Tag
free garbage
collection �	� 	�� �	� for both monomorphic and polymor

phic programming languages relies on analyzing types at
run time to determine the size and layout of objects in the
heap� To support any of these implementation strategies�
it is necessary to propagate type information through clo

sure conversion and into the generated code� The purpose
of this paper is to demonstrate how this can be done in both
a simply
typed and a polymorphic setting�
We present closure conversion as an example of a type�

directed and type�preserving translation� In general� such

translations transform both a term and its type� possibly
relying on type information to guide the translation� Thus
each stage of the compiler can be viewed as a type
preserving
translation between typed intermediate languages� Exam

ples of such translations have been given by Leroy ��
��
Ohori ����� Harper and Lillibridge ����� and Harper and Mor

risett ����� In contrast to type
free compilation strategies�
these translations make essential use of type information
during translation to increase the time or space e�ciency of
programs� In addition to the practical advantages of this ap

proach� type
directed translation also facilitates the work of
the compiler writer� In particular� the typing properties of
the intermediate code may be exploited to give clear� concise
proofs of compiler correctness through the method of logical
relations �	�� �� ��� 	�� 		�� Furthermore� the intermediate
code of the compiler can be mechanically typed
checked�
an important debugging tool for the compiler writer� Fi

nally� checkable typed intermediate languages are a promis

ing technique for ensuring safety properties of programs in
a distributed environment �
� 	
��

We describe closure conversion for the simply
typed �

calculus and the predicative fragment of the polymorphic
�
calculus� In each case we present closure conversion in
two stages� The �rst stage� called abstract closure conver�
sion� is a type
directed translation to an intermediate lan

guage with a primitive notion of closures� We describe the
translation as a deductive system where the choice of en

vironment representations may be independently made for
each closure� We argue that various representations consid

ered in the literature �such as the FAM ��� or CAM ����� as
well as hybrid representations �	��� can all be explained in
this uniform framework� We establish the correctness of the
translation once for all environment representations�
The second stage� called closure representation� is an

other type
directed translation where closures are imple

mented in terms of generic typed �
calculus primitives� The
main idea is to represent closures as objects consisting of
a single method �the code� and a single instance variable
�the environment�� We show that� in the simply
typed case�
Pierce and Turner�s type discipline for object
oriented pro

gramming ���� may be used to characterize the types of clo

sures� In particular� we use existential type abstraction to
ensure the privacy of environment representation in much
the same way that Pierce and Turner hide the representa

tion types of instance variables� In the polymorphic case�
we must use a more sophisticated type discipline in order
to track critical type sharing relationships within the clo

sure� To this end� we exploit a variant of the translucent

type ���� �or manifest type ����� formalism� Our �closures as
objects� model provides an interesting counterpoint to the
more familiar �objects as closures� proposal introduced by
Reddy ��
��
We prove the correctness of both the abstract closure

conversion and the closure representation stages using the
method of logical relations� The main idea is to de�ne a
type
indexed family of simulation relations that establish a
correspondence between the source and target terms of the
translation� Once a suitable system of relations has been
de�ned� it is relatively straightforward to prove by induction
on the de�nition of the compilation relation that the source
and target of the translation are related� From this� we may
conclude that a closed program and its translation evaluate
to the same result� Due to lack of space� we omit the proofs
of correctness here� However� full details may be found in

the companion technical report �����

Closure conversion is discussed in descriptions of various
functional language compilers �	�� ��� �� �� 	��� It is sim

ilar to �
lifting ���� in that it eliminates free variables in
the bodies of �
abstractions but di�ers by making the rep

resentation of the environment explicit as a data structure�
Making the environment explicit is important because it ex

poses environment construction and variable lookup to an
optimizer� Furthermore� Shao and Appel show that not all
environment representations are �safe for space� �	��� and
thus choosing a good environment representation is an im

portant part of compilation� Wand and Steckler �	�� have
consider two optimizations of the basic closure conversion
strategy� called selective and lightweight closure conversion�
and provide a correctness proof for each of these in an un

typed setting� Hannan ��� recasts Wand�s work into a typed
setting and provides correctness proofs for one of Wand�s
optimizations� Hannan�s translation� like ours� is given as a
deductive system� but he does not consider the important
issue of environment representation �preferring an abstract
account instead�� nor does he consider the typing properties
of the closure
converted code� Finally� neither Wand nor
Hannan consider closure conversion under a type
passing
interpretation of polymorphism�

The remainder of this paper is organized as follows� In
Section �� we give an overview of closure conversion and
the typing issues involved for the simply
typed �
calculus�
In Section 	� we provide the details of our type
preserving
transform for the simply
typed case� In Section �� we give an
overview of closure conversion and the typing issues involved
for the predicative fragment of the polymorphic �
calculus�
The formal development of this conversion is given in Section
��

� Overview of Simply�Typed Closure Con�

version

The main ideas of closure conversion are illustrated by con

sidering the following ML program�

let val x � �
val y � �
val z � �
val f � �w� x 	 y 	 w

in
f �

end�

The function f contains free variables x and y� We may
eliminate references to these variables from the body of f
by abstracting an environment env and replacing x and y by
references to the environment� In compensation� a suitable
environment containing the bindings for x and y must be
passed to f before it is applied� This leads to the following
translation�

let val x � �
val y � �
val z � �
val f � ��env��w���x env
 	 ��y env
 	 w

fx�x� y�yg
in

f �

end�

References to x and y in the body of f are replaced by
projections ��eld selections� �x and �y that access the corre

sponding component of the environment� Since the code for
f is closed� it may be hoisted out of the enclosing de�nition
and de�ned at the top
level� We ignore this �hoisting� phase
and instead concentrate on the process of closure conversion�
In the preceding example the environment contains bind

ings only for x and y� and is thus as small as possible� Since z
is in scope� it is also sensible to include z in the environment
of f� resulting in the following code�

let val x � �
val y � �
val z � �
val f � ��env��w���x env
 	 ��y env
 	 w

fx�x� y�y� z�zg
in

f �

end�

In the examples above� we used a �at FAM
like ��� rep

resentation of the environment as a record with one �eld for
each variable� Alternatively we could choose a linked CAM

like ��� representation in which each binding is a separate
frame attached to the front of the remaining bindings� This
idea leads to the following translation�

let val x � �
val y � �
val z � �
val f � ��env��w�

��x��link��link env

 	
��y��link env

 	 w

fz�z� link�fy�y� link�fx�xggg
in

f �

end�

The linked representation facilitates environment sharing�
but accessing a variable requires link traversals proportional
to the nesting depth of the variable in the environment� The
linked representation also supports constant
time closure
creation� but this requires reusing the current environment�
Reusing the current environment can result in unnecessary
bindings in the environment �such as z above�� leading to
space leaks�
These simple translations fail to delay the application of

the code to its environment under call
by
value evaluation�
A natural representation of a delayed application or closure
is an ordered pair �code� env
 consisting of the code to

gether with its environment� Application of a closure to
an argument proceeds by projecting the code part from the
closure and then applying it simultaneously to both the en

vironment and the argument according to some calling con

vention� For example�

let val x � �
val y � �
val z � �
val code � �env��w� �x�env
 	 �y�env
 	 w
val env � fx�x� y�yg
val f � �code� env

in
��� f
 ��� f
 �

end�

But since code has a type of the form �ve � �� � ��� where
�ve is the type of the environment env� the closure as a whole
would have type ��ve � �� � ���� �ve� exposing the type of
the environment� As a result� this translation does not� in
general� preserve types� For example� consider the following
ML source program with type int� int�

let val y � �
in

if true then
�x� x	y

else
�z� z

end�

Closure converting this expression and representing the clo

sures as pairs yields

let val y � �
in

if true then
��env��x� x 	 �y�env
� fy�yg

else
��env��z� z� fg

end�

This program fails to type
check because the then
clause of
the conditional has type �fy�intg � int� int�� fy�intg�
whereas the else
clause has type �fg � int� int� � fg�
If types are to be preserved by closure conversion� the

representation of the environment must be hidden� This
may be achieved through the use of existential types �����
whose typing rules are given in Figure �� Brie�y� the pack
construct packages a type � with a term e� abstracting cer

tain occurrences of � in the type of e as the type variable t�
The open operation extracts the contents of a package for
use within a �xed scope� holding the type component of the
package abstract� �See Mitchell and Plotkin�s article ���� for
further discussion of existential types��
Using existentials� we may hide the type of the environ

ment by abstracting it from the type of the closure itself�
Speci�cally� a closure of type �� � �� is represented by a
package of the form

pack �ve with �code�env� as �tve��tve � �� � ���� tve

with type �tve��tve � �� � ��� � tve� Applying this to the
example of the conditional expression given above� we obtain
the translation

let val y � �
in

if true then
pack fy�intg with ��env��x�x	�y�env
�fy�yg

as �tve��tve � int� int�� tve

else
pack fg with ��env��z�z� fg

as �tve��tve � int� int�� tve

end�

It is easy to see that the types of the clauses of the condi

tional agree� and that the translation has type �tve��tve �
int� int�� tve�
With closures represented as packages of existential type�

applications of the form ee� are translated as follows�

��� � e � ����t�
��� � pack � with e as �t�� � �t��

��� � e� � �t��
�

� � ftg� � � fx���g � e� � �
��� � open e� as t with x in e� � �

�t �� FTV ���� t �� ��

Figure �� Typing Rules for Existentials

open e as tve with z � �tve � �� � ���� tve
in

��� z
 ��� z
 e�
end�

That is� the package e is opened� holding the environment
representation abstract� and the code part is simultaneously
applied to both the environment and the argument of the
application�

� A Formal Account of Simply�Typed Clo�

sure Conversion

In this section we present the details of closure conversion for
the call
by
value� simply
typed �
calculus� We break the full
transformation into two stages� as outlined in the introduc

tion� To simplify the presentation� we begin with a version
of abstract closure conversion that does not admit sharing
of environments and then consider the general� shared envi

ronment case separately� Next� we give the representation
of closures in terms of existential types as sketched in the
preceding section� Finally� we prove the correctness of the
translations using a logical relations argument�
We de�ne the syntax of the source language� ��� as fol

lows�

Types � �� b j �� � ��
Expressions e �� c j x j �x��� e j e� e�
Values v �� c j �x��� e

Types consist of base types �b� and function types�� Expres

sions consist of constants �c� of base type� variables� abstrac

tions� and applications� We use � to denote a sequence of
type bindings of the form fx����� � � � � xn��ng �n 	 �� where
the xi�s are distinct variables� The judgement � � e � �
asserts that the expression e has type � under the type as

signment �� and is derived from the standard typing rules
of the simply
typed �
calculus� The dynamic semantics of
the language is de�ned by judgements of the form e �� v
asserting that the closed expression e evaluates to the value
v� The judgement is de�ned by the following standard in

ference rules for call
by
value evaluation�

v �� v
e� �� �x���� e e� �� v� e�v��x� �� v

e� e� �� v

��� Abstract Closure Conversion

We de�ne the target language for abstract closure conver

sion� �cl � as follows�

Types � �� b j �� � �� j h�� � � � �� �ni j code��ve� ��� ���
Exp�s e �� c j x j e�e� j he�� � � � � eni j �i�e� j

�xve��ve� �x���� e j hhe�� e�ii
Values v �� c j �xve��ve� �x���� e j hv�� � � � � vni j hhv�� v�ii

�The results of this paper easily extend to other source types in�
cluding products and sums�

In the introduction we informally presented a closure as a
partial application of code to an environment� with the in

tention that this application is delayed until the closure is
applied to an argument� To make this precise we intro

duce an explicit closure form� written hhe� eveii� where e is
the code of the closure and eve is its environment� Notice
that closures are distinguished from applications of func

tions to arguments� which are written in the usual way by
juxtaposition� To capture the restriction that the code part
of a closure should be closed� we introduce a special code
type� code��ve� ��� ���� consisting of closed terms of the form
�xve��ve��x����e� which abstract both an environment and
an argument� �
The typing rules for �cl are standard except for code and

closures� whose rules are given as follows�

fxve��ve� x���g � e � ��
� � �xve��ve��x����e � code��ve� ��� ���

� � e � code��ve� ��� ��� � � eve � �ve
� � hhe� eveii � �� � ��

The evaluation rules governing closures are given as fol

lows�

e� �� v� e� �� v�
hhe�� e�ii �� hhv�� v�ii

e� �� hh�xve��ve��x����e� vveii e� �� v�
e�vve�xve� v��x� �� v

e� e� �� v

When a closure is applied to an argument� the environment
and the argument are substituted for the corresponding vari

ables and the body of the code is evaluated�

We de�ne abstract closure conversion as the type
directed
translation from �� to �cl given in Figure �� We formulate
the translation as a deductive system with judgements of
the form ��x�� 	 e � e� and ��x�� 	 �� � e�ve� where �
and �� are source type assignments� � is a source type� e is
a source expression� and e� and e�ve are target expressions�
The distinguished variable x is used to represent the argu

ment of the nearest enclosing �
abstraction� the variables in
� include this �
abstraction�s free variables�
The judgement ��x�� 	 e � e� asserts that e� is the

translation of e under the assumption that � � fx��g � e �
� � for some � �� The judgement ��x�� 	 �� � e�ve asserts
that e�ve is an expression that evaluates to the environment
corresponding to ��� under the assumption that each binding
in �� occurs in � � fx��g� The order of bindings in � is
important� because this determines the translation of both
environments and free variables�

�In practice� a multi�argument ��abstraction is used for code in
the target language� However� the polymorphic case requires a more
complicated construct that abstracts both values ��� and types ����
For uniformity we use a curried presentation to abstract multiple
arguments�

�const� �� x�� 	 c� c �arg� ��x�� 	 x� x �env� fx����� � � � � xn��ng�x�� 	 xi � �i�xve�

�abs�
��x��� � 	 �� � eve �

��x�� 	 e� e�

�� x��� � 	 �x���e� hh�xve�j�
�j� �x��� e�� eveii

�app�
��x�� 	 e� � e�� ��x�� 	 e� � e��

��x�� 	 e� e� � e�� e��

�context�
��x�� 	 x� � e� � � � ��x�� 	 xn � en
��x�� 	 fx����� � � � � xn��ng� he�� � � � � eni

�� � fx��g � xi � �i�

Figure �� Simply
Typed Abstract Closure Conversion

We use the variable xve to hold the environment argu

ment of the current code body� Thus� we translate free vari

ables to projections of xve� More precisely� according to
rule �env�� we translate a reference to the free variable xi
found in the ith position of the type assignment � to the ith
projection of the variable xve� On the other hand� according
to rule �arg�� we translate a reference to the argument of the
current code body to the distinguished argument variable x�
Under the assumptions ��x��� �� we translate an abstrac

tion �x���e to a closure according to the �abs� rule� To con

struct the environment of the closure� we choose a type as

signment �� such that ��x��� � 	 �� � eve is derivable via
the �context� rule and ���x�� 	 e� e�� In e�ect� these rules
require that every binding in the closure�s environment must
be in scope �i�e�� in � � fx��� �g� and the environment is re

quired to contain bindings for all of the free variables in
the original function �x��� e� However� �� may also contain
bindings for variables that are in scope but do not occur free
in the function� Consequently� there are many choices for
��� with the exact choice being in�uenced by time and space
considerations�
We construct the environment of a closure via the �context�

rule by translating each of the variables occurring in ��

�namely x��

 � xn� to the target expressions e��

 � en� We
place the resulting expressions in a tuple he�� � � � � eni� to
form the environment data structure of the closure� This
representation of the environment has type h�� �

 � �ni�
which we summarize by writing j��j�
To produce the code of the closure� we translate the body

of the source function under the strengthened assumptions
���x �� � producing the body of the code� e�� We then ab

stract the environment and argument� yielding the transla

tion �xve�j�

�j� �x��� e��
Using a dummy �current argument� to translate an en

tire closed program� it is easy to prove by induction on the
derivation of the translation that the translation preserves
the type of a program�

Theorem � If � � e�� and ��x�b 	 e� e�� then � � e� � � �

To prove the correctness of the translation� we use a type

indexed family of logical relations relating closed source ex

pressions to closed target expressions �� � and closed source
values to closed target values �
 �� The relations are de�ned
by induction on source types as follows�

e �� e� i� e �� v and e� �� v� and v
� v�

c
b c
v
����� v� i� for all v�
�� v��� v v� ��� v� v���

We extend the relation to �nite source �
� and target sub

stitutions �
��� mapping variables to their respective class of

values� These relations are de�ned as follows�

fx���� �����xn ��ng�x�� �hv�� � � � � vni�xve� v�x�
i�
�xi�
�i vi for � � i � n and
�x�
� v�

Theorem � Let

��x��� �
�� If � � fx��� �g � e � � and

��x��� � 	 e� e�� then
�e� ��
��e���

Thus� for a closed program of base type� evaluating the
program and its translation yields syntactically equivalent
values�

��� Sharing Environments

Some implementations of functional programming languages
share portions of an environment among closures in an e�ort
to decrease space and closure creation time� In this section
we extend the treatment of abstract closure conversion to
allow for shared environments� We achieve this by impos

ing additional structure on environments to allow for nested
representations�
The type assignments in the previous section ��� consist

of a �at sequence of variable declarations� To provide for
shared environment representations� we enrich the structure
of type assignments to support nested type assignments as
follows�

! �� fx��g j h!�� � � � �!mi

A nested type assignment is either a single type binding
or a sequence of nested type assignments� The environment
corresponding to the type assignment ! has target language
type j!j� where jfx��gj � and jh!�� � � � �!mij hj!�j �
� � � � j!mji� We can obtain a non
nested type assignment
��� from a nested type assignment �!� simply by dropping
the extra structure�
We give the most important translation rules for closure

conversion with nested environments in Figure 	� the re

maining rules may be obtained from those in Figure � by
replacing � with ! throughout�
We use the �env�tuple� rule to construct a nested envi

ronment he��

 � eni corresponding to the type assignments
!��

 �!n� if !�x�� 	 !i � ei� for � � i � n� We ob

tain each of the !i and ei from the �arg�� �env�� �subenv��
and �env�tuple� rules� We use the �arg� rule to translate the
argument of the nearest enclosing �
abstraction as an en

vironment� and we use the �env� rule to translate the free
variables of this abstraction as an environment� As before�
we use the distinguished variables x and xve to hold these
two values in the translation� We use the �subenv� rule to
translate access to a type assignment nested within ! to a

�arg� fx��� �g�x�� 	 fx��g� x �env� !�x�� 	 !� xve �var�
!�x�� 	 fx��� �g� e
!�x�� 	 x� � e

�subenv�
!i�x�� 	 !� e

h!�� � � � �!ni�x�� 	 !� e��i�xve��xve�
�env�tuple�

!�x�� 	 !� � e�

 !�x�� 	 !n � en
!�x�� 	 h!�� � � � �!ni� he�� � � � � eni

Figure 	� Simply
Typed Closure Conversion using Nested Environments

projection of the environment corresponding to !� Finally�
we translate access to a variable within a type assignment
via the �var� rule�
As an example� consider the translation

hfx��intg� fx��intgi�x
��int 	 ��x�int�x� " x� " x���

hh�xve����x�int����xve� " ������xve�� " ������xve���
hx�� xveiii

where � is hint � hint� intii� We construct the new envi

ronment for the closure by pairing the current argument x�

and the current environment xve according to the �env�tuple�
rule� If we used the �at translation given in Figure �� then
we would have to project the values for x� and x� out of the
current environment and place these values and the current
argument into a newly allocated tuple�

Nested type assignments are su�ciently �exible to han

dle many commonly
used environment representations� For
example� the Categorical Abstract Machine� or CAM ����
uses a linked list to represent the environment� This is re

�ected in our framework by restricting the shape of nested
type assignments and by restricting the �env�tuple� rule to
�cons� the current argument onto the current environment�
as follows�

�CAM context� !c �� fx��g j hfx��g�!ci

�env�tuple� !c�x�� 	 hx���!ci� hx� xvei�

The advantage of the CAM strategy is that the cost of the
construction of a new environment is constant� However�
in the worst case� accessing values in the environment takes
time proportional to the length of the environment�
In contrast� the FAM ��� uses �at environments with no

sharing� The closure conversion of Figure � accurately mod

els the environment strategy of the FAM if we choose a spe

ci�c strengthening strategy in the �abs� rule where only the
free variables of the function are preserved in the resulting
closure�s environment� The advantage of the FAM environ

ment representation is that the cost of variable lookup is
always constant and the representation is �safe for space�
��� according to Appel�s de�nition� However� constructing
the environment for a closure takes time proportional to the
number of free variables in the function� and closures cannot
share portions of their environment�
Clearly� there are a variety of other strategies for form

ing environments� For example� the shared closure strat

egy described by Appel and Shao �	�� that is also safe for
space can also be formulated in our framework� However�
to determine a good representation for each closure�s envi

ronment requires a good deal more information including
an estimate as to how many times each variable is accessed�
when garbage collection can occur� what garbage collection
algorithm is used� etc�

��� Closure Representation

The purpose of abstract closure conversion is to choose an
environment representation for each closure and to make the
construction of closures explicit� By making environments
explicit� we expose operations that are implicit at the source
level to an optimizer at the target level� In particular� an
optimizer can eliminate redundant constructions of environ

ments or redundant projections from environments�
However� the process of extracting the code and environ

ment of a closure remains an implicit� atomic operation of
the operational semantics� Hence� we cannot optimize these
closure operations� For instance� if the same closure is re

peatedly applied in a loop� it is not possible to extract the
code and environment once� repeating only the application
to the environment and argument within the loop�
To make such optimizations possible� we choose a rep

resentation of closures in terms of generic primitives that
would� in practice� already be present in the intermediate
language� Speci�cally� we consider a target language ��

with existential types� de�ned by the following grammar�

Types � �� b j t j h�� � � � �� �ni j
code��ve� ��� ��� j �t��

Exp�s e �� c j e��e�� e�� j �xve��ve��x����e j
he�� � � � � eni j �i e j
pack � with e as � j
open e� as t with x�� in e�

This language includes existential types and code types�
but not function types� we show how to de�ne function types
in terms of these primitive constructs� We restrict applica

tions to the form e��e�� e�� in order to preclude a partial
application of code to its environment� this can be seen as
a specialized use of multi
argument functions�
Typing judgements for �� are of the form ��� � e � �

where � is a list of type variables in scope and � is a type
assignment for variables in scope� We assume that the free
type variables of the types in the range of � and the free type
variables of e and � are contained in �� The typing rules
and evaluation rules of the language are standard �see ����
and Figure ���

We describe the closure representation phase in two parts�
We begin by de�ning a translation from �cl to �� types� de

noted j� j� as follows�

jbj b
jh�� � � � �� �nij hj��j � � � �� j�nji
jcode��ve� ��� ���j code�j�vej� j��j� j��j�

j�� � ��j �tve�hcode�tve� j��j� j��j�� tvei�

We translate an arrow type to a pair consisting of code and
an environment� with the environment type held abstract
using an existential quanti�er�

�closure�
� 	 e � code��ve� ��� ���� e� � 	 eve � �ve � e�ve

� 	 hhe� eveii � �� � �� � pack j�vej with he�� e�vei as j�� � ��j

�app�
� 	 e� � �� � �� � e�� � 	 e� � �� � e��

� 	 e�e� � �� �
open e�� as tve with x�hcode�tve� j��j� j��j�� tvei in ��� x���� x� e���

�x �� Dom����

Figure �� Important Rules of Simply
Typed Closure Representation

Next� we de�ne the translation of �cl terms to �� terms
in Figure �� The judgements of the translation are of the
form � 	 e � � � e�� where �� e� and � are a �cl type as

signment� expression� and type respectively� and e� is a ��

expression� The interesting rules are �closure� and �app��
The other rules �not shown� simply map the other �cl con

structs to their �� counterparts� We translate a closure to a
pair of the code and the environment packed with the type
of the environment� We translate an application to an open�
extract from a package the pair of a code and an environ

ment� and then apply the code to the environment and the
argument�

It is easy prove that the translation preserves the type
of a program up to the translation of the type� We do so
by �rst extending the type translation to type assignments�
setting

jfx����� � � � � xn��ngj fx��j��j� � � � � xn�j�njg�

Theorem � If � � e � � and � 	 e � � � e�� then �� j�j �
e� � j� j�

Correctness of the translation is proven using logical re

lations between �cl and �� expressions� �cl and �� values�
and �cl and �� substitutions� The de�nition of the rela

tions and the proof of the correctness can be found in our
technical report �����

� Overview of Polymorphic Closure Con�

version

Closure conversion for a language with ML
style �i�e�� pred

icative ��	�� explicit polymorphism follows a similar pattern
to the simply
typed case� but with two additional compli

cations� First� we must account for free type variables as
well as free value variables in the code of an abstraction�
Second� we must create closures for both value abstractions
��
terms� and type abstractions �#
terms�� In this section�
we give an overview of the typing di�culties encountered
when closure converting value abstractions� the treatment
of type abstractions is similar �see Section � for details��
To eliminate free occurrences of type variables and or

dinary variables from the code� we abstract with respect
to a type environment and a value environment� replacing
free variables by references to the appropriate environment�
This process results in closed code that can be hoisted to
the top level and shared among multiple closures� The code
is partially applied to suitable representations of the type
and value environments to form a polymorphic closure� As
in the simply
typed case� we need a data structure to repre

sent the delayed partial application of the code to its type

and value environments� In addition� we must abstract both
the kind of the type environment and the type of the value
environment so that their representations remain private to
the closure� Without the abstraction� we run into the same
typing problems that we encountered in the simply
typed
case�
As a running example� consider the expression

�x�t���x�t�� y�t�� z�int
�

where t� and t� are free type variables and y and z are free
value variables of type t� and int respectively� It is easy to
check that this expression has type t� � �t�� t��int�� To
closure convert the expression� we translate it to the partial
application

let val code �
#tenv �� ft���$� t���$g�
�venv � fy��t� tenv� z�intg�
�x � ��t� tenv
��x� �y venv� �z venv

in
code ft��t�� t��t�g fy�y� z�zg

end�

The code of the closure abstracts a type environment tenv
and a value environment venv� The actual type environment
ft��t��t��t�g is a record of kind ft���$�t���$g� where $ is the
kind of monotypes� The actual value environment fy�y�
z�zg is a record with type fy�t�� z�intg� Note� however�
that this type contains a free reference to t�� which must
be replaced by a reference to the type environment in order
to ensure that the translated code is closed� We therefore
ascribe the type fy��t� tenv� z�intg to the value environ

ment� noting that the projection �t� tenv is equivalent to
t� when the actual type environment is as given earlier� By
similar reasoning we assign the type �t� tenv to the argu

ment x of the �
abstraction� It is easy to check that the
code of the closure has the type �code given by the equation

�code �
�tenv��ft���$� t���$g�
fy��t� tenv� z�intg�

��t� tenv
����t� tenv
���t� tenv
�int
�

It follows that the entire let expression has the type of the
original term� namely t� � �t� � t� � int��

Now let us consider the representation of the partial ap

plication of code to its type and value environments as a
data structure� This data structure must be �mixed phase�
in the sense that it consists of both type and value compo

nents� This suggests using a package of existential type of
the form

e � pack ft��t�� t��t�g with �code� fy�y� z�zg

as �tte���te��code� �ve�

where code is as given earlier and

�te � ft���$� t���$g
�ve � fy��t� tte� z�intg�

This package is well
typed according to the usual rules for
existentials�
In contrast� consider what happens when we attempt to

give the translation of the application of e to an argument
e� of type t�� Proceeding as in the simply
typed case� we in

troduce an open expression that extracts the code� the type
environment� and the value environment from the closure�
and applies the code to the environments and argument�
Doing so results in the following translation�

open e as tte���te with w��code� �ve
in

��� w
 tte ��� w
 e�

end�

Unfortunately� this expression is not well
typed� The di�

culty is that e� has type t�� whereas the expression ��� w

tte ��� w
 has type

��t� tte
����t� tte
���t� tte
�int
�

Since tte is abstract� the type variable t� is not equivalent
to �t� tte� Consequently� the proposed translation of appli

cation fails to type
check�
One way to get around this problem is to apply the code

to the type environment before forming the closure� This
yields

let val c � code ft��t��t��t�g
in

pack ft��t��t��t�g with �c� fy�y�z�zg

as �tte���te��c � �ve

end�

where the type �c is given by the equation

�c � fy��t� tte�z�intg���t� tte
�
���t� tte
���t� tte
�int
�

The translation of application given above will work in this
case because the code and the value environment both use
tte as the type environment� But this approach depends
upon the very mechanism we are attempting to eliminate�
namely partial application� The partial application of the
code to the type environment produces code that is no longer
closed� Thus� the code cannot be shared among the di�erent
instantiations of the type environment�

Our solution to this issue is to constrain the code so
that it can be applied to a closure�s value environment only
when it is also applied to the same closure�s type environ

ment� This ensures that the type environment passed to the
code and the type environment used in the construction of
the closure�s value environment are the same� Fortunately�
typing constraints of this form have already been addressed
by research on module systems ���� ��� ����
Following Harper and Lillibridge ����� we use the notion

of translucent types to express the desired constraint on the
code� In particular� when forming the closure� we coerce the
code to have the translucent type

�tenv � ft��t��t��t�g���te�
fy��t� tenv�z�intg���t� tenv
�

���t� tenv
���t� tenv
�int
�

This type is a super
type of the original code type �code
because we have constrained the bound type variable tenv to
be bound to a particular type� namely the type environment
of the closure� �See Harper and Lillibridge ���� and Leroy
���� for further discussion of subtyping in this setting�� This
constraint ensures that this reference to the code will only
be applied to the type environment of the closure�
The constraint on tenv allows us to conclude that �t�

tenv is equivalent to t� and similarly� that �t� tenv is equiv

alent to t�� We propagate these equivalences into the type
yielding

�tenv � ft��t��t��t�g���te�
fy�t��z�intg � t� � �t��t��int
�

We can now form the package containing the type envi

ronment� code� and value

pack ft��t��t��t�g with �code� env

as �tte���te�� � �ve�

where � is given via the equation

� � �tenv�tte���te�fy��t� tte�z�intg�
��t� tte
����t� tte
���t� tte
�int
�

and show that this package has type �tte���te��� �ve� Note
that � is the same as �c� �the type of the partial application
of code to the type environment�� except for the additional
constrained type abstraction of tenv� Through the use of
translucency� we have accomplished the e�ect of partial ap

plication at the type
level without actually performing the
application at the term
level�
Opening a package e of type �tte���te��� �ve to apply to

an argument e� of type t� yields�

open e as tte���te� w��� �ve
in

��� w
 tte ��� w
 e�

end�

The expression ��� w
 tte ��� w
 e� has type t� � �t� �
t� � int�� thus the entire expression is well
formed�
In summary� we use transluceny to constrain the type

of code before placing it in a closure� We use pack to rep

resent the mixed
phase data structure containing the code�
type environent� and the value environment� The resulting
package has a type of the form

��tte���te��t tte���te��ve � �� � ���� �ve�

To avoid the typing problems encountered in the simply

typed case� we need to hide the representations of the value
environment and the type environment� Thus� we use pack
again to abstract the kind of the type environment and the
type of the value environment� resulting in the following type
for closures�

�kte��tve��$��tte��kte���t tte��kte�tve � �� � ��� � tve�

Careful consideration of the foregoing discussion reveals
that we only made limited use of translucency� The univer

sally quanti�ed variable tenv does not occur in the scope
of the abstraction once the equational constraint on tenv is

propagated� We use this property to provide a substantially
simpler mechanism than the full translucent type calculus�
In particular� we only need to capture the restriction that
a polymorphic function must be applied to a speci�c type
argument� This may be expressed by introducing a type
� � � consisting of functions that must be applied to the
constructor � to yield a value of type �� The following two
rules govern this new type constructor�

� � � �� � ��� � e � �t�����
��� � e � � � ����t�

��� � e � � � �
��� � e � � �

The �rst rule restricts the domain of type application to the
speci�c constructor � � This corresponds to restricting the
type to �t ��� and propagating the equivalence t � into
�� The actual type application for � � � is permitted only
for constructors equivalent to � � These two rules naturally
come from the necessity of delaying type applications for
closure conversion� Using this notation� the type translation
of �� � �� becomes

�kte��tve��$��tte��kte��tte � tve � �� � ���� tve�

The type of closures abstracts the kind of the type en

vironment and the type of the value environment� ensuring
that these may be chosen separately for each closure in the
system� As in the simply
typed case� we have obtained an
�object oriented� representation of polymorphic closures by
exploiting a combination of the type systems proposed by
Pierce and Turner ���� for objects and by Harper and Lil

libridge ���� for modules�

� A Formal Account of Polymorphic Clo�

sure Conversion

In this section� we present closure conversion for the predica

tive fragment of the second order �
calculus� This fragment
is su�cient to model Standard ML ��	�� and admits rela

tively simple correctness proofs based on logical relations�
Our results extend to the full impredicative polymorphic �

calculus� but at the expense of a substantially more complex
correctness argument �based on Girard�s method of candi

dates �����
We de�ne the syntax of the source language �� as follows�

Kinds � �� $
Constructors � �� b j t j �� � ��
Types � �� � j �� � �� j �t�����
Expressions e �� c j x j �x����e j #t����e j e� e� j e �
Values v �� c j �x����e j #t����e

We use kinds ��� to describe constructors ��� and types
��� to describe expressions �e�� There is only one kind �$�
for ���cl� but since subsequent languages have a richer kind
structure� we introduce kinds here for uniformity� Closed
constructors of kind $ correspond to a subset of types� in
particular the types that do not include quanti�ers �the
monotypes�� Thus� constructors of kind $ can be injected
into types� We leave this injection implicit and treat � as
both a constructor and a type�
A kind assignment � is a sequence that maps type vari

ables to kinds and is of the form ft������ � � � � tn���ng� �n 	 ���
Typing judgements are of the form ��� � e � � where the
free type variables of �� e� and � are contained in the do

main of �� and the free value variables of e are contained in

the domain of �� Typing judgements are derived according
to the standard typing rules of the second
order �
calculus
�see for example ��	� ����� The most interesting rules are
the introduction and elimination rules for quanti�ed types�

� � ft���g� � � e � �
��� � #t���� e � �t���� �

�t �� Dom����

��� � e � �t���� �
�� � � e � � ����t�

�FTV��� � Dom����

��� Abstract Closure Conversion

Abstract closure conversion for �� converts both �
abstractions
and #
abstractions into abstract closures consisting of code�
a type environment and a value environment� We consider
here only �at environment representations� but note that the
treatment of nested environments given in Section 	 carries
over to the polymorphic case�
We de�ne the syntax of the target language ���cl as fol

lows�

Kinds � �� $ j h�� � � � �� ��i
Con�s � �� b j t j �� � �� j h�� � � � �� �ni j

h��� � � � � �ni j �i � j
Types � �� � j �� � �� j �t����� j h�� � � � �� �ni j

vcode�tte���te� �ve� ��� ��� j
tcode�tte���te� �ve� t���� ��

Exp�s e �� c j x j e� e� j e � j he�� � � � � eni j �i e j
#tte���te��xve��ve��x����e j
#tte���te��xve��ve�#t����e j hhe�� �� e�ii

We use product kinds of the form h�� � � � �� �ni to spec

ify the shapes of type environments in much the same way
that we use product types to specify the shapes of value
environments�
There are two sorts of code� code corresponding to an or

dinary �
abstraction has the form #tte���te��xve��ve��x����e
while code corresponding to a type abstraction has the form
#tte���te��xve��ve�#t����e� The code in each case abstracts
a type environment and a value environment� For the �

case the code also abstracts a value argument� and for the
#
case the code abstracts a type argument� We introduce
the types vcode and tcode to distinguish the two types of
code from the types of closures� to ensure closure conditions
on code� and to preclude partial applications of code to en

vironments� These types may be described by the following
informal correspondences�

vcode�tte���te� �ve� ��� ���
 �tte���te��ve � �� � ��
tcode�tte���te� �ve� t���� ��
 �tte���te��ve � �t������

We consider code types to be polymorphic� so these types
do not lie in the range of a polymorphic quanti�er��

Abstract closures have the form hhe�� �� e�ii� consisting of
piece of code e�� a type environment � � and a value environ

ment e��
For the typing of ���cl � kind assignments ��� map type

variables to kinds while type assignments ��� map value
variables to types� The judgements of the static semantics
are as follows�

� � � �� � � is a well
formed constructor of kind ��
� � � � is a well
formed type�
� � �� � �� �� � �� and �� are equivalent constructors�
� � �� � �� �� and �� are equivalent types�
��� � e � � e is a well
formed expression of type ��

�This restriction is relaxed in the impredicative case�

The formation rules of types are standard� We have to in

troduce de�nitional equality of constructors and types to
account for projections of constructors from product kinds�
These rules consist of the equivalence rules for projections
below� as well as the standard rules for equivalence and con

gruence�

� � �ih��� � � � � �ni � �i �� �i
� � h�� �� � � � � �n �i � � �� h�� � � � �� �ni

The typing rules for expressions are standard except for
the rules for codes and closures� These rules are de�ned in
Figure �� We require that code values be closed with respect
to both type variables as well as value variables� This allows
us to share the code among multiple instantiations of the free
type variables and free value variables�

We de�ne abstract closure conversion from �� to ���cl by
the deductive system given in Figures � and �� The judge

ment �env��arg 	 � � �� means that �� is the translation of
� where �env is a kind assignment corresponding to a type
environment and �arg is a kind assignment corresponding
to a type argument �if any�� This judgement also implic

itly de�nes a translation from constructors to constructors�
since source
level constructors ��� are a subset of types ���
and the translation maps constructors to constructors� In
translated programs the type variable tte is used for type
environments�
The judgement �env��arg� �env� �arg 	 e � e� means

e� is a translation of e where �env and �arg are as in the
type translation� and �env and �arg are type assignments
corresponding to the value environment and value argument
respectively� A type environment corresponding to �env and
a value environment corresponding to �env are implemented
in the target language by types of the form j�envj and j�envj
respectively� as de�ned below�

jft������ � � � � tn���ngj h�� � � � �� �ni
jfx����� � � � � xn��ngj h�� � � � �� �ni�

The most interesting rules are the term translations of
value and type abstractions� In each case� an appropri

ate type environment and value environment must be con

structed as part of the closure� Thus� assignments ��

env and
��env must be chosen as subsets of the current assignments
�env ��arg and �env��arg respectively� These assignments
must be chosen so that all of the free value variables of the
term are contained in ��env and furthermore� all of the free
type variables of the term and the value environment must
be contained in ��

env�
The chief technical di�culty in formulating these rules

is that we need two type assignments� ��env and �
��
env� to de

scribe the value environment of the closure� depending upon
the context� The type assignment ��env is constructed from
the context �env��arg� �env� �arg and is used to build the
environment eve in the context in which the closure is con

structed� The type assignment ���env is obtained from ��env
via the translation ��

env� � 	 ��env � ���env and corresponds
to the type of the value environment in the context of the
closure itself� This ensures that the code of the closure is
closed since the type ascribed to the value environment ar

gument does not refer to free type variables in the context
where the closure was created�
The type correctness of the translation is proved by in

duction on the derivation of the translation�

Theorem � If �env��arg� �env� �arg 	 e � e� and �env �
�arg� �env��arg � e � �� then ftte��j�envjg��arg� fxve�j�

�
envjg�

��arg � e� � �� where �env��arg 	 � � ��� �env��arg 	
�env � ��env� and �env��arg 	 �arg � ��arg�

The correctness of the translation may be established us

ing an argument similar to that given for the simply
typed
case� The restriction to predicative polymorphism signi�

cantly simpli�es the proof�

��� Closure Representation

We now turn to the representation of closures for the poly

morphic language�
The target language for polymorphic closure representa

tion� called ���� � is de�ned as follows�

Kinds � �� k j $ j h�� � � � �� �ni
Types � �� b j t j h�� � � � �� �ni j h��� � � � � �ni j �i � j

�t����� j �� � �� j �� � �� j �t����� j �k��
Exp�s e �� x j c j �x���e j e� e� j #t����e j e � j

he�� � � � � eni j �i e j
pack � with e as �� j
open e as t��� with x�� in e�

pack � with e as � j
open e as k with x�� in e�

Our translation of function types involves existential quan

ti�ers� Since function types can instantiate a polymorphic
type in the source language� we need to be able to instantiate
polymorphic types with existentials in the target language�
As a consequence� the target language must be impredica�
tive� To simplify the language� we provide general abstrac

tions �� and #�� instead of code types that abstract more
than one argument at a time�
Since we shall have limited need of existential kinds� we

must introduce kind variables k into the language� with cor

responding kind contexts and judgements� A kind context K
is simply a sequence of kind variables fk�� � � � � kng� �n 	 ���
The typing judgements of the language are as follows�

K�� � � �� � � has kind ��
K�� � �� � �� �� � �� and �� are equal types of kind ��
K���� � e � � e has type ��

The formation rules� de�nitional equality rules� and typ

ing rules are standard except that values of polymorphic
type �t����� may be coerced to the special type �� � �����t��
where �� is a type of kind �� as described in the Section ��
The details of the typing rules are found in the companion
technical report �����
We de�ne the closure representation stage as a type

directed translation from ���cl to ���� � We begin by de�ning
a translation from source constructors and types to target
type as follows�

jtj t
jbj b

jh��� � � � � �nij hj��j� � � � � j�nji
j�i�j �ij�j

jh�� � � � �� �nij hj��j � � � �� j�nji
jvcode�t���� �ve� ��� ���j �t����j�vej � j��j � j��j

jtcode�t���� �ve� s���
�� ���j �t����j�vej � �s�����j��j

j�� � ��j �k��t���$��t��k�h�t� t� � j��j � j��j�� t�i
j�s������j �k��t���$��t��k�h�t� t� � �s����j��j�� t�i

ftte���teg� fxve��ve� x���g � e � ��
��� � #tte���te��xve��ve��x����e � vcode�tte���te� �ve� ��� ���

ftte���te� t��$g� fxve��veg � e � �
��� � #tte���te��xve��ve�#t��$�e � tcode�tte���te� �ve� t� ��

��� � e� � vcode�tte���te� �ve� ��� ��� � � � � �te ��� � e� � �ve���tte�
��� � hhe�� �� e�ii � ��� � ������tte�

��� � e� � tcode�tte���te� �ve� t� �� � � � � �te ��� � e� � �ve���tte�
��� � hhe�� �� e�ii � ��t��$�������tte�

Figure �� Typing Rules for Code and Closures of ���cl

�env��arg 	 b� b ft���$� � � � � tn��$g��arg 	 ti � �i tte

�env��arg 	 t� t �t � Dom��arg��

�env��arg 	 �� � ��� �env��arg 	 �� � ���
�env��arg 	 �� � �� � ��� � ���

�env��arg � ft��$g 	 � � ��

�env��arg 	 �t���� � � �t���� ��

�env��arg 	 t�� � ��

 �env��arg 	 t�n � �n
�env��arg 	 ft����$� � � � � t

�
n��$g� h��� � � � � �ni

�env��arg 	 �� � ���

 �env��arg 	 �n � ��n
�env��arg 	 fx����� � � � � xn��ng� fx���

�
�� � � � � xn��

�
ng

Figure �� Polymorphic Abstract Closure Conversion� Types and Type Assignments

�const� �env��arg� �env� �arg 	 c� c

�env� �env��arg� fx����� � � � � xn��ng� �arg 	 xi � �i xve

�arg� �env��arg� �env� �arg 	 x� x �x � Dom��arg��

�abs�

�env��arg� �env� �arg 	 �
�
env � �te �env��arg� �env� �arg 	 �

�
env � eve

��
env� � 	 �

�
env � ���env ��

env� � 	 �� � ���
��

env� �� �
�
env� fx���g 	 e� e�

�env��arg� �env� �arg 	 �x����e� hh#tte��j�
�
envj��xve�j�

��
envj��x��

�
��e

�� �te� eveii

�tabs�
�env��arg� �env� �arg 	 ��

env � �te �env��arg� �env� �arg 	 ��env � eve
��

env� � 	 �
�
env � ���env ��

env� ft��$g� �
�
env� � 	 e� e�

�env��arg� �env� �arg 	 #t��$� e� hh#tte��j�
�
envj��xve�j�

��
envj�#t��$� e

�� �te� eveii

�app�
�env��arg� �env� �arg 	 e� � e�� �env��arg� �env� �arg 	 e� � e��

�env��arg� �env� �arg 	 e� e� � e�� e��

�tapp�
�env��arg� �env� �arg 	 e� e� �env��arg 	 � � � �

�env��arg� �env� �arg 	 e � � e� � �

�context�
�env��arg� �env� �arg 	 xi � e�i

�env��arg� �env� �arg 	 fx����� � � � � xn��ng� he��� � � � � e
�
ni

Figure �� Polymorphic Abstract Closure Conversion� Terms

The code types are translated to the appropriate combi

nation of target � and� types� The translation of a function
type abstracts the kind of the type environment� k� and the
type of the value environment� t�� The type environment t
is paired with the code by using an existential type� Since
the type of a code is instantiated by t� only the type envi

ronment of the closure can be given to the code� The code
and the value environment are paired as in the simply
typed
case� The translation of � has the same structure as that of
an arrow type�
The translation of expressions is summarized in Figure
�

The kind of the type environment� the type of the value en

vironment� and the type environment are packed with the
pair of the code and the value environment� In the transla

tion of applications� the type environment is obtained from
a closure by an open expression and the code and the value
environment are obtained by projections� Then the type
environment� the value environment� and the argument of
application are passed to the code�

Type preservation is proved by induction on the struc

ture of the translation derivation� The typing rules for
� � �� are essential to prove the cases for the translations
of closures�

Theorem � If ��� 	 e � � � e�� then �� �� j�j � e� � j�j�

The correctness of the translation can be proven using
logical relations as in the simply typed case� However� the
de�nition of the relations is more complicated because of the
presence of polymorphic types and types of the form �i���
in the language ���cl � The relations and the proof appear
in the companion technical report �����

	 Summary and Conclusions

We have given a type
theoretic account of closure conversion
by de�ning type
directed transformations for the simply

typed and polymorphic �
calculi� The types used in the
target languages of the translations may be characterized
in a natural way based on the �closures as objects� prin

ciple� In both the simply
typed and polymorphic cases of
closure representation� we used Pierce
Turner
style existen

tials to hide the representations of environments� In the
polymorphic case� we took advantage of Harper
Lillibridge

style translucency to ensure that the same type environment
is used to type both the code and the value environment of
a closure�
Our translations preserve types� facilitating correctness

proofs and composition with other type
based translations�
Furthermore� our translations provide support for run
time
type analysis and type
based� tag
free garbage collection�
We have put the ideas in this paper to practical use in

two separate compilers for ML� One compiler is being used
to study novel approaches to tag
free garbage collection�
The other compiler� called TIL �Typed Intermediate Lan

guages�� provides a general framework for analyzing types
at run time to support e�cient data representations� e�

cient calling conventions� and �nearly� tag
free garbage col

lection in the presence of polymorphism �	��� Propagating
types through closure conversion is necessary for both com

pilers so that types can be examined at run time�
We have found that propagating types through closure

conversion �and other compilation phases� has an additional
engineering bene�t� In particular� we can automatically ver

ify the type
integrity of each type
preserving phase in the

compiler� Indeed� automatic type
checking has enabled us
to isolate and eliminate various subtle bugs in TIL�
For simplicity� the current implementations of our com

pilers use only abstract closure conversion� However� both
compilers extend this translation to avoid creation of clo

sures for �known� functions in the style of Wand and Steck

ler �	��� In the future� we hope to use the closure representa

tion phase described here to further expose closure handling
operations to optimization�

 Acknowledgements

We would like to thank Lars Birkedal� Andrzej Filinski�
Mark Leone� Sue Older� Benjamin Pierce� Paul Steckler�
David Tarditi� and the anonymous reviewers for their many
helpful comments and suggestions�

References

��� A� W� Appel� Compiling with Continuations� Cambridge
University Press� �����

��� A� W� Appel and T� Jim� Continuation�passing� closure�
passing style� In ACM Symp� on Principles of Programming
Languages� ��	��

�
� D� E� Britton� Heap storage management for the program�
ming languagePascal� Master�s thesis� University of Arizona�
���
�

��� L� Cardelli� The functional abstractmachine�Polymorphism�
����� ��	
�

�
� C� Cousineau� P��L� Curien� and M� Mauny� The categorical
abstract machine� In Functional Programming Languages
and Computer Architecture� pages
����� ��	
�

��� H� Friedman� Equality between functionals� In R� Parikh�
editor� Logic Colloquium ���� Norh�Holland� ���
�

��� J��Y� Girard� Y� Lafont� and P� Taylor� Proofs and Types�
volume � of Cambridge Tracts in Theoretical Computer Sci�
ence� Cambridge University Press� Cambridge� England�
��	��

�	� J� Gosling� Java intermediate bytecodes� In ACM SIG�
PLAN Workshop on Intermediate Representations �IR���	�
Jan� ���
�

��� J� Hannan� A type system for closure conversion� In The
Workshop on Types for Program Analysis� ���
�

���� R� Harper and M� Lillibridge� Explicit polymorphism and
CPS conversion� In ACM Symp� on Principles of Program�
ming Languages� ���
�

���� R� Harper and M� Lillibridge� A type�theoretic approach
to higher�order modules� In ACM Symp� on Principles of
Programming Languages� pages ��
��
�� �����

���� R� Harper� D� MacQueen� and R� Milner� Standard
ML� Technical Report ECS�LFCS�	���� Laboratory for
the Foundations of Computer Science� EdinburghUniversity�
Mar� ��	��

��
� R� Harper and J� C� Mitchell� On the type structure of Stan�
dard ML� ACM Transaction on Programming Languages
and Systems� �
���� ���
�

���� R� Harper and G� Morrisett� Compiling polymorphismusing
intensional type analysis� In ACM Symp� on Principles of
Programming Languages� pages �
������ ���
�

��
� T� Johnsson� Lambda lifting� Transforming programs to re�
cursive equations� In Functional Programming Language and
Computer Architecture� LNCS ���� pages ������
� Springer�
Verlag� ��	
�

�vcl�
��� 	 e � vcode�tte���te� �

�
ve� �

�
�� �

�
��� e� ��� 	 eve � �ve � e�ve

��� 	 hhe� �� eveii � �� � �� � pack �te� j�vej� j� j with he�� e�vei as j�� � ��j

�app�

��� 	 e� � �� � �� � e�� ��� 	 e� � �� � e��
��� 	 e� e� � �� � open e�� as kte� tve� tte

with y � htte � tve � j��j � j��j � tvei
in ��� y� tte ��� y� e

�
�

�tcl�
��� 	 e � tcode�tte���te� �

�
ve� t���� �

��� e� ��� 	 eve � �ve � e�ve
��� 	 hhe� �� eveii � �t������ � pack �te� j�vej� j� j with he�� e�vei as j�t�����j

�tapp�

��� 	 e � �t������ e�

��� 	 e � � ����t�� open e� as kte� tve� tte
with y � htte � tve � �t����j�j � tvei

in ��� y� tte ��� y� j� j

Figure
� Polymorphic Closure Representation

���� R� Kelsey and P� Hudak� Realistic compilation by program
translation �detailed summary �� In ACM Symp� on Prin�
ciples of Programming Languages� pages �	������ ��	��

���� D� Kranz et al� Orbit� An optimizing compiler for Scheme�
In Proc� of the SIGPLAN �
� Symp� on Compiler Construc�
tion� ��	��

��	� X� Leroy� Unboxed objects and polymorphic typing� In ACM
Symp� on Principles of Programming Languages� �����

���� X� Leroy� Manifest types� modules� and separate compila�
tion� In ACM Symp� on Principles of Programming Lan�
guages� pages �������� �����

���� D� MacQueen� Modules for Standard ML� In Proc� ACM
Conf� Lisp and Functional Programming� pages ��	�����
��	�� Revised version appears in �����

���� Y� Minamide� G� Morrisett� and R� Harper� Typed closure
conversion� Technical Report CMU�CS��
����� School of
Computer Science� Carnegie Mellon University� July ���
�

���� J� C� Mitchell and G� D� Plotkin� Abstract types have exis�
tential type� ACM Transaction on Programming Languages
and Systems� ���
�� ��		�

��
� G� Morrisett� M� Felleisen� and R� Harper� Abstract models
of memory management� In Functional Programming Lan�
guages and Computer Architecture� pages ������ June ���
�

���� R� Morrison� A� Dearle� R� Connor� and A� L� Brown� An
ad hoc approach to the implementation of polymorphism�
ACM Transaction on Programming Languages and Systems�
�
�
�� �����

��
� A� Ohori� A compilation method for ML�style polymorphic
record calculi� In ACM Symp� on Principles of Programming
Languages� �����

���� B� C� Pierce and D� N� Turner� Simple type�theoretic foun�
dations for object�oriented programming� Journal of Func�
tional Programming� ������������� Apr� ����� A preliminary
version appeared in Principles of Programming Languages�
���
� and as University of Edinburgh technical report ECS�
LFCS������
� under the title �Object�Oriented Program�
ming Without Recursive Types��

���� G� D� Plotkin� Lambda�de�nability in the full type hierarchy�
In To H�B�Curry� Essays on Combinatory Logic
 Lambda
Calculus and Formalism� Academic Press� ��	��

��	� U� S� Reddy� Objects as closures� In Proc� ACM Conf� Lisp
and Functional Programming� ��		�

���� J� C� Reynolds� De�nitional interpreters for higher�order
programming languages� In Proceedings of the Annual ACM
Conference� pages �������� �����

�
�� Z� Shao and A� W� Appel� Space�e�cient closure represen�
tations� In Proc� ACM Conf� Lisp and Functional Program�
ming� �����

�
�� Z� Shao and A� W� Appel� A type�based compiler for Stan�
dard ML� In Programming Language Design and Its imple�
menation� pages �������� ���
�

�
�� R� Statman� Completeness� invariance� and lambda�
de�nability� Journal of Symbolic Logic� ��������� ��	��

�

� R� Statman� Logical relations and the typed ��calculus� In�
formation and Control� �
� ��	
�

�
�� G� L� Steele Jr� Rabbit� A compiler for Scheme� Master�s
thesis� MIT� ���	�

�

� W� W� Tait� Intensional interpretation of functionals of �nite
type� Journal of Symbolic Logic�
����� �����

�
�� D� Tarditi� G� Morrisett� P� Cheng� C� Stone� R� Harper�
and P� Lee� TIL� A type�directed optimizing compiler for
ML� Technical report� School of Computer Science� Carnegie
Mellon University� Oct� ���
� To appear�

�
�� A� Tolmach� Tag�free garbage collection using explicit type
parameters� In Proc� ACM Conf� Lisp and Functional Pro�
gramming� pages ����� June �����

�
	� R� Wahbe� S� Lucco� T� Anderson� and S� Graham� E�cient
software�based fault isolation� In ��th ACM Symposium on
Operating Systems Principles� Dec� ���
�

�
�� M� Wand and P� Steckler� Selective and lightweight closure
conversion� In ACM Symp� on Principles of Programming
Languages� �����

