
Selective Tail Call Elimination

Yasuhiko Minamide

Institute of Information Sciences and Electronics
University of Tsukuba

and
PRESTO, JST

minamide@is.tsukuba.ac.jp

Abstract. Tail calls are expected not to consume stack space in most
functional languages. However, there is no support for tail calls in some
environments. Even in such environments, proper tail calls can be im-
plemented with a technique called a trampoline. To reduce the overhead
of trampolining while preserving stack space asymptotically we propose
selective tail call elimination based on an effect system. The effect sys-
tem infers the number of successive tail calls generated by the execution
of an expression, and trampolines are introduced only when they are
necessary.

1 Introduction

Tail calls are expected not to consume stack space in most functional languages.
Implementation of proper tail calls requires some support from a target environ-
ment, but some environments including C and Java Virtual Machine (JVM) [10]
do not provide such support. Even in such environments, proper tail calls can
be implemented with a technique called a trampoline. However, the trampoline
technique is based on a non-standard calling convention and is considered to
introduce too much overhead. Thus, most compilers for such environments do
not adopt trampolining and abandon proper tail calls [2, 17, 3].

To solve this problem we selectively introduce trampolines based on an effect
system. We consider a typed call-by-value language as a source language of
selective tail call elimination. Effect systems were originally proposed to infer
side-effects of a program by Gifford and Lucassen [8, 11], and an extension was
applied to estimate the execution time of a program [6, 15]. Our effect system
infers the number of successive tail calls that can be generated by the execution
of an expression. Based on effects, functions are divided into two kinds: those
that lead to a finite number of successive tail calls and those that may lead
to an infinite number of successive tail calls. Then, it is necessary to adopt
trampolines only for the latter kind. In this manner we can reduce the overhead
of trampolining while preserving stack space asymptotically.

Our effect system includes the rule of subtyping, and some applications may
call both kinds of functions. To support subtyping on functions and enable se-
lective elimination of tail calls, we introduce a transformation that translates

a function into a record containing two functions supporting different calling
conventions. We prove that the increase of stack space usage caused by this
transformation is bounded by a factor determined by the effect system.

We have incorporated selective tail call elimination into the MLj compiler [2],
which complies Standard ML into Java bytecodes. Results for benchmark pro-
grams show that our effect system is strong enough to indicate that most func-
tions are safe without tail call elimination. We show that there is little degrada-
tion of performance for most benchmark programs. We also measure impact of
tail call elimination on stack space usage. It shows that general tail call elimi-
nation sometimes greatly reduces stack space usage.

This paper is organized as follows. In Section 2, we review the trampolining
transformation and clarify its problem. In Section 3, we introduce our selective
tail call elimination and prove its soundness. In Section 4, the effect system is
extended with a wider class of effects. In Section 5 we outline effect inference
for our effect system. Section 6 shows some examples where our effect system
shows that a function is unsafe without tail call elimination. In Section 7 we
describe our implementation and discuss the results of our experiments. Finally,
we review related work and present our conclusions.

2 Tail Call Elimination with Trampolines

In functional languages, loops are often expressed with tail calls and thus they
are expected not to consume stack space. Let us consider the following program
written in Standard ML. The application sum (x-1, a+x) in this program is
called a tail call because there is nothing to do in the function sum after the
application.

let fun sum (x, a) = if x = 0 then a else sum (x-1, a+x)
in

sum (y, 0)
end

If the tail call is properly implemented, the program above requires only constant
stack space. On the other hand, if it is not properly implemented, it requires
stack space proportional to y. Loops are often expressed in this way in functional
languages and thus it is important to implement proper tail calls.

However, it is not straightforward to implement proper tail calls in envi-
ronments without direct support of tail calls, such as in C and JVM. In such
environments it is possible to implement proper tail calls with a non-standard
calling convention called a trampoline [1]. We will explain the trampoline tech-
nique as a source-to-source transformation. The example above is transformed
into the following program.

datatype ’a ret = Thunk (unit -> ’a ret) | Val ’a

fun loop (Val x) = x

| loop (Thunk f) = loop (f ())

let fun sum (x, a) =
if x=0 then Val a else Thunk (fn () => sum (x-1, a+x))

in
loop (sum (y, 0))

end

The tail call in the program is translated into the creation of a closure. Then the
closure is called from the loop.1 This technique was used in a Standard ML to
C compiler [18] and is also useful to implement various features of programming
languages [7]. However, it is clear that this technique introduces a lot of overhead.
Thus, most compilers into C and JVM do not adopt trampolining and abandon
proper tail calls.

3 Selective Tail Call Elimination

To reduce the overhead introduced by implementation of proper tail calls by
techniques such as trampolining, we propose selective elimination of tail calls
that preserves the asymptotic complexity of the stack space.

The basic idea is that if the number of successive tail calls generated by
a function call is bounded by some constant, it is not necessary to adopt a
trampoline for the function. Let us consider the following program.

let fun f x = x
fun g x = f x

in
g 0

end

There are two tail calls in this program: f x and g 0. However, it is not necessary
to introduce a trampoline for this program. The execution of the function f leads
to no tail call and thus f x generates only one successive tail call. The function
g calls f at a tail-call position and thus the function call g 0 generates two
successive tail calls. Since the number of successive tail calls is bounded in this
program, it is safe to execute this program without tail call elimination.

On the other hand, in the following program the number of successive tail
calls that the application h y leads to cannot be bounded. Thus it is necessary
to introduce a trampoline for the program.

let fun h x = if x > 0 then h (x - 1) else 0
in

h y
end

1 The function loop should be implemented so as not to consume stack space.

If we can statically analyze the number of successive tail calls generated by
execution of each function, we can avoid introducing trampolines for functions
satisfying some safety condition and selectively eliminate tail calls with tram-
polines. In the next section we introduce an effect system to eliminate tail calls
selectively.

3.1 Effect System

We introduce sized effects to check the number of successive tail calls generated
by the execution of an expression. The following are the effects we consider.

ρ ::= ω | 0 | 1 | . . .

We consider an order relation ρ ≤ ρ′ between effects: the usual order relation
between natural numbers and i ≤ ω for any natural number i. For a finite effect
i, the effect i+ is defined as i+ = i + 1. Then we consider the following types
where a function type is annotated with an effect.

τ ::= nat | τ →ρ τ

We include nat as a base type for natural numbers and we also use other base
types in examples. The functions we discussed above have the following types.

f : int →1 int
g : int →2 int
h : int →ω int

Application of f at a tail-call position leads to one tail call. Since the application
of g leads to a subsequent application of f, the type of g is annotated with 2.
On the other hand, the number of successive tail calls generated by h cannot be
bounded. Thus its type is annotated with ω.

We consider the subtyping relation defined by the following rules.

τ ≤ τ
τ1 ≤ τ ′

1 τ ′
2 ≤ τ2 ρ′ ≤ ρ

τ ′
1 →ρ′

τ ′
2 ≤ τ1 →ρ τ2

We formalize our effect system for the following language, where abstractions
and applications are annotated with effects.

V ::= x | 0 | suc(V) | fixx.λρy.M

M ::= V | @ρMM | case V of 0 ⇒ M, suc(x) ⇒ M

We will discuss how to annotate the language without effect annotations in
Section 5. The values 0 and suc(V) are of natural numbers. Judgments of the
effect system have the following forms:

E � V : τ

E � M : τ ! ρ

x : τ ∈ E

E � x : τ
E � 0 : nat

E � V : nat

E � suc(V) : nat

E � V : τ

E � V : τ ! 0

E, x : τ1 →i+ τ2, y : τ1 � M : τ2 ! i

E � fixx.λi+y.M : τ1 →i+ τ2

E, x : τ1 →ω τ2, y : τ1 � M : τ2 ! ω

E � fixx.λωy.M : τ1 →ω τ2

E � M1 : τ1 →ρ τ2 ! ρ1 E � M2 : τ1 ! ρ2

E � @ρM1M2 : τ2 ! ρ

E � M : τ ′ ! ρ′ ρ′ ≤ ρ τ ′ ≤ τ

E � M : τ ! ρ

E � V : nat E � M1 : τ ! ρ E, x : nat � M2 : τ ! ρ

E � case V of 0 ⇒ M1, suc(x) ⇒ M2 : τ ! ρ

Fig. 1. Type system

where ρ represents the maximum number of successive tail calls generated by
evaluation of M . The rules of the effect system are defined in Figure 1. The rules
of abstraction and application are explained as follows.

– If the body of a function leads to i successive tail calls, application of the
function at a tail-call position leads to i+ successive tail calls.

– If the body of a function has effect ω, the function has effect ω. That
means successive tail calls generated by application of the function cannot
be bounded.

– The effects of M1 and M2 are ignored in the rule of application because
they correspond to evaluation at non-tail-call positions. Thus, the effect of
the application @ρM1M2 is determined only by the effect annotation of the
function type.

To discuss the soundness of selective tail elimination we introduce an oper-
ational semantics that profiles stack space and models evaluation with proper
implementation of tail calls. We define a big-step operational semantics with the
following judgments:

�T M ↓i V

�N M ↓i V

with the meanings that M is evaluated to V with i stack frames at a tail-call
position or a non-tail-call position, respectively. A whole program is considered
to be evaluated at a tail-call position. The rules are given in Figure 2 where
�α M ↓n V means the rule holds both for α = N and α = T . At a tail-call
position, the evaluation of the body of a function requires no new stack frame.
Thus, the stack space required for evaluation of the application is max(l, m, n).
On the other hand, at a non-tail-call position, it requires a new stack frame: the
stack space is max(l, m, n + 1). This semantics models stack space usage when
a program is executed after compilation. Correspondence to a semantics that
models execution based on an interpreter is discussed in [12].

�T V ↓0 V �N V ↓0 V

�N M1 ↓l fixx.λρ′
y.M0 �N M2 ↓m V2 �T M0[fixx.λρ′

y.M0/x][V2/y] ↓n V

�T @ρM1M2 ↓max(l,m,n) V

�N M1 ↓l fixx.λρ′
y.M0 �N M2 ↓m V2 �T M0[fixx.λρ′

y.M0/x][V2/y] ↓n V

�N @ρM1M2 ↓max(l,m,n+1) V

�α M1 ↓n V

�α case 0 of 0 ⇒ M1, suc(x) ⇒ M2 ↓n V

�α M2[V0/x] ↓n V

�α case suc(V0) of 0 ⇒ M1, suc(x) ⇒ M2 ↓n V

Fig. 2. Operational semantics

With respect to the operational semantics, the soundness of the type system
in the usual sense is proved. However, the following lemma says nothing about
effects inferred by the effect system.

Lemma 1 (Soundness).

1. If ∅ � M : τ !ρ and �N M ↓m V then ∅ � V : τ .
2. If ∅ � M : τ !ρ and �T M ↓m V then ∅ � V : τ .

3.2 Transformation

We introduce a program transformation that selectively eliminates tail calls
based on effect annotations. The idea is to eliminate tail calls of the form @ωMM
with trampolining and to adopt the standard calling convention for @iMM .2

However, implementation based on this idea is not so simple because τ1 →i τ2

can be considered as τ1 →ω τ2 by subtyping. Let us consider the following
program.

let fun f x = x
fun g x = if ... then x else g (x - 1)

in
(if ... then f else g) 0

end

The functions f and g have types int →1 int and int →ω int, respectively. It is not
possible to determine the kinds of functions that are called by the application
in the body of the let-expression. Thus, it is not straightforward to compile the
application in the body.

2 We assume that the standard calling convention does not support tail call elimina-
tion.

To solve this problem, we represents τ1 →i τ2 as a record that contains two
functions: one for a trampoline and one for the standard calling convention. Then
subtyping on function types is translated into record (object) subtyping.

For the target language of the transformation we consider the following types.

σ ::= nat | σ → σ | σ →t σ | {fun : σ, tfun : σ} | {tfun : σ}
There are two kinds of function types: σ → σ uses the standard calling convention
without proper tail calls, and σ →t σ uses the non-standard calling convention
with tail call elimination. There is no subtyping relation between σ1 → σ2 and
σ1 →t σ2. Two kinds of record types, {tfun : σ} and {fun : σ, tfun : σ}, are
included to translate function types and we consider the following subtyping
relation between them.

{fun : σ1, tfun : σ2} ≤ {tfun : σ2}
Then our transformation translates function types into record types so that

the subtyping relation is preserved. The translation of types |τ | is defined as
follows:

|τ1 →ω τ2| = {tfun : |τ1| →t |τ2|}

|τ1 →i τ2| = {fun : |τ1| → |τ2|, tfun : |τ1| →t |τ2|}
We therefore have the following translation of subtyping.

|τ1 →i τ2| ≤ |τ1 →ω τ2|
This translation of subtyping is natural for compilation to Java bytecodes be-
cause JVM has subtyping on objects through inheritance of classes.

The syntax of the target language is defined as follows. It includes two kinds
of abstraction and application, and syntax for records and field selection.

N ::= W | @NN | @tNN | N.fun | N.tfun | caseW of 0 ⇒ N, suc(x) ⇒ N

W ::= x | 0 | suc(W) | λx.N | λtx.N | fixx.{fun = W, tfun = W} |
fixx.{tfun = W}

The fields of a record expression are restricted to values: this restriction is suffi-
cient for our transformation. The type system of the target language is standard
and does not include effects. The definition of the type system is shown in Ap-
pendix A.

We define an operational semantics of the target language in the same manner
as that of the source language: we define a big-step operational semantics with
following judgments.

�T N ↓i W

�N N ↓i W

The main rules are defined as follows. It should be noted that tail calls are not
properly implemented for application @N1N2 and thus the evaluation of the

body of the function requires a new stack frame: the stack space required is not
max(l, m, n), but max(l, m, n + 1).

�N N1 ↓l λtx.N �N N2 ↓m W2 �T N [W2/x] ↓n W

�T @tN1N2 ↓max(l,m,n) W

�N N1 ↓l λx.N �N N2 ↓m W2 �T N [W2/x] ↓n W

�T @N1N2 ↓max(l,m,n+1) W

The other rules are shown in Appendix B.
The transformation of selective tail call elimination is defined as follows:

[[x]] = x

[[0]] = 0
[[suc(V)]] = suc([[V]])

[[fixx.λωy.M]] = fix x.{tfun = λty.[[M]]}
[[fixx.λiy.M]] = fix x.{fun = λy.[[M]], tfun = λty.[[M]]}

[[@iM1M2]] = @([[M1]].fun) [[M2]]
[[@ωM1M2]] = @t([[M1]].tfun) [[M2]]

[[caseV of 0 ⇒ M1, suc(x) ⇒ M2]] = case [[V]] of 0 ⇒ [[M1]], suc(x) ⇒ [[M2]]

We extend the translation of types to type environments as |E|(x) = |E(x)|.
Then the type correctness of this transformation is formulated as the following
lemma and proved by induction on the derivation of E � M : τ !ρ.

Lemma 2 (Type soundness). If E � M : τ !ρ then |E| � [[M]] : |τ |.
To formalize the soundness of the transformation we introduce the following

notation: �T M ↓≤k V if �T M ↓k′
V for some k′ ≤ k. The factor of increase of

stack space usage by selective tail call elimination is determined by the maximum
of the effect annotations in M , denoted by max(M).

Theorem 1 (Soundness). Let C = max(M) + 1.

1. If ∅ � M : τ ! i and �T M ↓k V then �T [[M]] ↓≤Ck+i [[V]].
2. If ∅ � M : τ !ω and �T M ↓k V then �T [[M]] ↓≤Ck+C−1 [[V]].
3. If ∅ � M : τ ! ρ and �N M ↓k V then �N [[M]] ↓≤Ck [[V]].

This theorem ensures that the stack space usage of a program is preserved asymp-
totically.

For example, @ω(fix f.λωx.@1(fix g.λ1y.y)x)0 and its translation are eval-
uated as follows:

�N @ω(fix f.λωx.@1(fix g.λ1y.y)x)0 ↓1 0

�N @t(fix f.{tfun = λtx.@(fix g.{fun = λy.y, tfun = λty.y}.fun)x}.tfun)0 ↓2 0

This example corresponds to the worst case: k = 1 and C = 2. The proof of the
theorem appears in Appendix C.

4 Extension of the Effect System

Th effect system we have presented has one unnatural limitation: ω must always
be assigned to a function which calls a function with effect ω at tail call position,
even if the function is safe without tail call elimination. In this section, we extend
our effect system to overcome this limitation by considering a wider class of
effects.

We first show an example where the limitation of our effect system appears.
Let us consider the following program.

fun f x = f x
fun g x = f x
fun h (0,x) = g x

| h (n,x) = h (n-1,x)

The function g is safe without tail call elimination: the stack space usage is
increased by 1 even if it is implemented with the standard calling convention.
However, in our effect system the function is assigned the effect ω to because it
calls the function f of the effect ω at a tail call position.

We solve this limitation by extending the effects in our type system into the
following form.

ρ ::= ω · i + j

where i and j are natural numbers. The intuition is that the function with effect
ω · i+j such that j > 0 is safe without tail call elimination. We identifies ω · i+0
and ω ·0+j with ω · i and j, respectively. The effect ρ+ and the subeffect relation
ρ ≤ ρ′ are defined as follows:

(ω · i + j)+ = ω · i + (j + 1)

ω · i + j ≤ ω · i′ + j′ iff i < i′, or i = i′ and j ≤ j′

The typing rules of abstraction in the effect system are extended as follows:

E, x : τ1 →ρ+
τ2, y : τ1 � M : τ2 ! ρ

E � fixx.λρ+
y.M : τ1 →ρ+

τ2

E, x : τ1 →ω·i τ2, y : τ1 � M : τ2 !ω · i
E � fix x.λω·iy.M : τ1 →ω·i τ2

Then we can assign the following types and thus g can be safely implemented
with the standard calling convention.

f : int →ω int
g : int →ω+1 int
h : int × int →ω·2 int

We also need to modify the transformation to implement selective tail call
elimination. Since a function with effect ω · i can be considered to have effect

ω · i + 1 in this system, a function with effect ω · i must support both calling
conventions. The transformation is modified as follows:

[[fixx.λρy.M]] = fixx.{fun = λy.[[M]], tfun = λty.[[M]]}
[[@ω·i+jM1M2]] = @([[M1]].fun) [[M2]]

[[@ω·iM1M2]] = @t([[M1]].tfun) [[M2]]

where j > 0. The intuitive meaning of extended effects can be explained with
this transformation.

– A tail call with effect ω generates successive tail calls of @t and then suc-
cessive tail calls of @. The successive tail calls of @ may be generated by
subeffect relation i ≤ ω.

– A tail call with effect ω · i may repeat i times the pattern of tail calls for ω
– A tail call with effect ω · i + j may generate j successive tail calls of @ and

then generates tail calls of the pattern for ω · i.
The soundness theorem is extended in the following form. We write maxi(M)

for the maximum j of ω · i + j appearing in M .

Theorem 2 (Soundness).
Let C =

∑∞
i=0 maxi(M) + 1 and D(j) =

∑j−1
i=0 maxi(M).

1. If ∅ � M : τ ! (ω · i + j) and �T M ↓k V then �T [[M]] ↓≤Ck+D(i)+j [[V]].
2. If ∅ � M : τ ! ρ and �N M ↓k V then �N [[M]] ↓≤Ck [[V]].

5 Effect Inference

We show how to infer effects in this section. Th effect inference can be formalized
as a type system with constraints, where a constraint generated by the type
system is solved with a simple graph-based algorithm. We assume that types
are already inferred with the standard type inference and consider the following
explicitly-typed language for effect inference.

τ ::= nat | τ →α τ

V ::= 0 | suc(V) | x | fix x : τ.λy.M

M ::= V | @αMM | case V of 0 ⇒ M, suc(x) ⇒ M

where α denotes an effect variable. The effect annotation of a lambda abstraction
can be determined from the type annotation of the fix-expression. We assume
effect variables appearing in a program are distinct.

Judgments of the effect system have the following forms: E; C � V : τ and
E; C � M : τ !α where C is a set of subeffect relations: α < α′ and α ≤ α′. A
constraint α < α′ holds if α ≤ α′ and α �= α′, or α = α′ = ω · i for some i. The
main rules of the effect system are given as follows:

E; C � V : τ α is fresh
E; C � V : τ !α

E, x : τ1 →α τ2, y : τ1; C � M : τ2 ! α′

E; C ∪ {α′ < α} � fix x : τ1 →α τ2.λy.M : τ1 →α τ2

E; C1 � M1 : τ1 →α′
τ2 !α1 E; C2 � M2 : τ ′

1 ! α2

E; C1 ∪ C2 ∪ {α′ ≤ α} ∪ C≤(τ ′
1, τ1) � @αM1M2 : τ2 !α

where C≤(τ ′
1, τ1) is the constraint to obtain the subtyping τ ′

1 ≤ τ1.

C≤(nat, nat) = ∅
C≤(τ1 →α τ2, τ

′
1 →α′

τ ′
2) = C≤(τ ′

1, τ1) ∪ C≤(τ2, τ
′
2) ∪ {α ≤ α′}

The constraint obtained by the rules above can be solved in the following
manner. We consider the graph of the relations α < α′ and α ≤ α′, and com-
pute the strongly connected components of the graph. If a strongly connected
component contains a relation of the form α < α′, the effect of the form ω · i
must be assigned to the effect variables appearing in the component. It is clear
that an effect ω · i+ j (j > 0) can be assigned to an effect variable not belonging
to such components.

6 Examples

There are several situations where an effect of the form ω · i is assigned to a
function. Although some of them are actually unsafe without tail call elimina-
tion, our effect system sometimes assigns ω · i to functions safe without tail call
elimination. In this section we show some examples of both the situations.

In our effect system, ω · i must be assigned to tail recursive functions in
general. However, tail recursive calls in a single recursive function can be imple-
mented as a loop and thus trampolining can be avoided for such tail calls. Our
effect system can be extended to be consistent with this implementation and
then such functions are not assigned ω · i to. Then there are two common exam-
ples where recursive functions are unsafe without tail call elimination: mutually
tail recursive functions and higher order recursive functions.

In the following example, the functions f and g contains mutually recursive
tail calls and thus must be assigned ω to.

fun f 0 = 0
| f n = g (n-1)

and g n = f (n-1)

However, it is possible to implement the tail calls as a loop if only one of f and
g are used from the other part of a program or the functions are copied into two
definitions.

The following is an example with a higher order function.

fun h 0 y = y
| h x y = h (x-1) (x+y)

The function h has type int → int → int. The tail recursive call of h (x-1)
(x+y) cannot be implemented as a loop. However, if the function is uncurried,

the tail call in the function can be implemented as a loop and thus the function
can be safely implemented without tail call elimination.

As the third example, we show a program that is safe without tail call elim-
ination, but is assigned ω to with our effect system.

let fun f (g:int -> int) = g 0
in

f (fn x => f (fn y => y))
end

You can check this program is safe without tail call elimination. Let us infer the
type of f. By assuming that f has type (int →α1 int) →α2 int, the constraints
α1 < α2 and α2 < α1 must be satisfied where the first constraint is obtained
from the definition of f and the second constraint is obtained from the body of
the let-expression. Then the effects α1 and α2 must be ω · i for some i. This
weakness of our effect system appears in the benchmark “logic” we will discuss
in the next section: many functions similar to the function above appear in the
program.

7 Implementation and Measurements

We have incorporated our selective tail call elimination into the MLj compiler [2],
which translates Standard ML into Java bytecodes. In MLj, tail calls are com-
piled into Java method invocations except recursive calls which are implemented
as loops. MLj uses an intermediate language based on monads to represent ef-
fects such as IO operations, exception, and non-termination. We extended the
effects of the intermediate language with our effect. The effects for selective tail
call elimination are inferred in a late stage of compilation and the transformation
is merged into the code generation phase of the compiler.

The translation of a function presented in Section 3.2 and 4 has one problem:
the body of λix.M is copied into two functions and thus the translation may
increase the code size. This problem can be solved by the following translation.

λiy.M = let y = λx.[[M]] in {fun = y, tfun = λtx.@yx}

However, we do not adopt this translation because it makes it difficult to com-
pare stack space usage. The worst case increase of code size observed for the
benchmark programs we will discuss later is about 35 %.3

We measured the effectiveness of our selective tail call elimination for the
most benchmark programs obtained from the following URL.4

ftp://ftp.research.bell-labs.com/dist/smlnj/benchmarks/

3 The pair representation is not used for the known function that are safe without tail
call elimination.

4 We excluded two programs count-graphs and mlyacc that are difficult to compile
with MLj because of the limitation of MLj.

total (A) (B) (C) (D)

barnes-hut 25 0 0 0 2

boyer 24 0 0 0 2

fft 28 0 0 0 3

knuth-bendix 83 5 5 5 3

lexgen 110 13 11 2 3

life 30 1 1 0 2

logic 58 51 36 36 2

total (A) (B) (C) (D)

mandelbrot 6 0 0 0 1

nucleic 38 0 0 0 3

ratio-regions 51 0 0 0 2

ray 82 2 2 0 3

simple 175 0 0 0 4

tsp 20 0 0 0 2

vliw 463 19 18 16 4

Table 1. Results of effect inference

MLj TCE STCE

knuth-bendix 3895 3373 3485

lexgen 1259 94 94

life 298 49 49

logic 3814 236 260

Table 2. Maximum stack size: (in number of frames)

Table 1 summarizes the results of our effect analysis. The column total shows
the number of the functions generated for each benchmark program. The columns
(A), (B) and (C) are the numbers of functions the analysis assigns an effect of
the form ω · i: (A), (B) and (C) are the numbers for selective tail call elimination
without extension, with extension and with extension and an extra phase of
optimization, respectively. The column (D) shows

∑∞
i=0 max(P) for each program

P , which determines the theoretical upper bound of increase of stack space usage.

– Eight programs out of 13 are shown safe without tail call elimination. Even
for the other programs except for the program logic, the ratio of the function
of effect ω · i is small.

– The most functions of the program logic have effect ω · i by the reason we
described in Section 6. The extension reduces the number, but more than
half of the functions still have ω · i.

– Since the maximum of the numbers in column (D) is 4, the theoretical upper
bound of stack space increase for selective tail call elimination compared to
tail call elimination is 5.

– The effectiveness of our selective tail call elimination depends on other phases
of compilation. An extra phase of optimization including uncurrying de-
creased the number of functions of effect ω · i for three programs.

Table 2 shows the maximum stack size during execution measured by the
number of frames. The table shows the results for the benchmark programs where

Interpreted-mode HotSpot Client VM

MLj TCE STCE MLj TCE STCE

barnes-hut 5.77 6.30(109.2) 5.83(101.0) 1.22 1.21(99.2) 1.23(100.8)

boyer 1.41 1.65(117.0) 1.41(100.0) 0.81 0.58(71.6) 0.82(101.2)

fft 1.71 2.12(124.0) 1.71(100.0) 0.57 0.60(105.3) 0.64(112.3)

knuth-bendix 11.09 10.80(97.4) 8.19(73.9) 2.00 2.12(106.0) 1.61(80.5)

lexgen 3.50 3.40(97.1) 3.49(99.7) 0.61 0.75(123.0) 0.63(103.3)

life 1.24 1.24(100.0) 1.15(92.7) 0.36 0.37(102.8) 0.35(97.2)

logic 17.40 18.90(108.6) 16.49(94.8) 4.51 2.79(61.9) 2.70(59.9)

mandelbrot 4.18 6.45(154.3) 4.22(101.0) 0.52 1.49(286.5) 0.55(105.8)

nucleic 0.68 0.73(107.4) 0.67(98.5) 0.34 0.44(129.4) 0.34(100.0)

ratio-regions 212.93 216.38(101.6) 209.11(98.2) 33.62 42.34(125.9) 33.67(100.1)

ray 5.77 6.20(107.5) 5.68(98.4) 1.88 1.13(60.1) 2.12(112.8)

simple 6.61 7.35(111.2) 6.38(96.5) 1.49 1.63(109.4) 1.54(103.4)

tsp 4.78 5.13(107.3) 4.75(99.4) 0.88 0.96(109.1) 0.84(95.5)

vliw 6.26 7.32(116.9) 6.42(102.6) 1.34 2.37(176.9) 1.46(109.0)

Table 3. Execution time (in seconds)

tail call elimination has some impact on the results. For all the other program, the
numbers are between 33 and 103. The results supports that tail call elimination is
desirable: stack sizes are greatly reduced for several programs. Selective tail call
elimination may increase stack size compared to tail call elimination. However,
the increase is relatively small, compared to the theoretical upper bound.

Table 3 shows execution times. The columns TCE and STCE are the results
for tail call elimination and selective tail call elimination, respectively. The num-
bers in the parenthesis are the ratios to those of MLj. Even for TCE, all the
non-tail-calls are implemented with the standard calling convention based on
the pair representation of functions. Measurements were done using Sun JDK
1.4.0, Java HotSpot Client VM on a Linux PC. We measured execution time on
the interpreted-mode with the -Xint option, and on the mode where HotSpot
compilation is enabled because it is sometimes difficult to interpret results on
the HotSpot VM. Each benchmark was run five times and we chose the fastest
run.

– TCE sometimes degrades the performance a lot. The worst case overhead
is 54.3 % and 186.5 % for the interpreted-mode and the HotSpot VM, re-
spectively. Compared to TCE, STCE causes little overhead: the worst case
overhead is 2.6 % and 12.8 %, respectively.

– For benchmark programs where stack size is reduced by tail call elimination,
execution times are sometimes reduced for both TCE and STCE: knuth-
bendix and logic. This can be explained as a reduction of garbage collection

(GC) time. For example, the GC times for logic are 2.43, 0.49 and 0.49 for
MLj, TCE and STCE, respectively. The same phenomenon was observed by
Schinz and Odersky in their tail call elimination for JVM [16].

– There are unexpected results on boyer and ray: the big improvement of
execution time over MLj and STCE is observed for TCE. We checked the
profiling data of executions and found that better decisions on compilation
are made by the HotSpot VM for TCE and the programs compiled by MLj
and STCE spent more time on interpreted methods.

8 Related Work

Dornic, Jouvelot and Gifford proposed an effect system to estimate execution
time of a program [6], and their work was extended by Reistad and Gifford [15]
with sized types [9]. By adapting the effect system extended with sized types we
may obtain more information about the stack usage of a program. However, our
simple effect system gives enough information for selective tail call elimination.

Implementation of proper tail calls and space safety are discussed by Clinger [5].
He considered that an implementation is safe with respect to space if it does not
increase the asymptotic space complexity of programs. Our selective tail call
elimination satisfies the criterion on stack space, but the factor of increase of
stack space depends on the program and is determined by the effect system.

Schinz and Odersky proposed tail call elimination for the Java virtual ma-
chine [16] that preserves complexity on stack space. Their method is dynamic:
it keeps track of the number of successive tail calls and execution is returned to
a trampoline if some predefined limit is exceeded. We think that it is possible
to reduce the overhead of their method with selective elimination of tail calls.

We have translated a function in the source language into a record with two
functions supporting different calling conventions. Similar translation was used
to support multiple calling conventions in type-directed unboxing by Minamide
and Garrigue [14], and the vectorized functions of Chakravarty and Keller [4].

9 Conclusion and Future Work

We have presented an effect system and a program transformation to eliminate
tail calls selectively. The transformation translates a function into a record with
two functions supporting different calling conventions. The transformation pre-
serves stack space asymptotically.

Our effect system will be useful even for target environments that directly
supports tail calls. Various program transformations sometimes translate tail
calls into non-tail calls. With our effect system, it is possible to check if such
translation is safe for each tail call.

We incorporated our effect system into the MLj compiler and measured the
proportion of functions that are unsafe without tail call elimination. The results
indicated that selective tail call elimination is very effective for most programs
and most functions can be implemented with the standard calling convention.

However, there is a limitation that our effect system is monovariant. This lim-
itation may be solved if we extend our effect system with effect polymorphism
or intersection types.

By selective tail call elimination, the asymptotic complexity of stack space
is preserved. The factor of the increase is determined by effect analysis and
depends on a program. However, it is also possible to guarantee the factor of
stack space increase by translating applications with annotations greater than
the predefined factor as applications with annotation ω.

Acknowledgments

This work is partially supported by Grant-in-Aid for Encouragement of Young
Scientists, No. 13780193.

References

1. H. Baker. Cons should not cons its arguments, part II: Cheney on the M.T.A.
SIGPLAN Notices, 30(9):17–20, 1995.

2. N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java byte-
codes. In Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), pages 129–140, 1998.

3. P. Bothner. Kawa - compiling dynamic languages to the Java VM. In Proceedings
of the USENIX 1998 Technical Conference, 1998.

4. M. M. T. Chakravarty and G. Keller. More types for nested data parallel pro-
gramming. In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming, pages 94–105, 1999.

5. W. D. Clinger. Proper tail recursion and space efficiency. In Proceedings of the
ACM SIGPLAN ’98 Conference on Programming Language Design and Implemen-
tation, pages 174–185. ACM Press, 1998.

6. V. Dornic, P. Jouvelot, and D. K. Gifford. Polymorphic time systems for estimat-
ing program complexity. ACM Letters on Programming Languages and Systems
(LOPLAS), 1(1):33–45, 1992.

7. S. D. Ganz, D. P. Friedman, and M. Wand. Trampolined style. In Proceedings
of the 4th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’99), pages 18–22, 1999.

8. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-
ming. In Proceedings of the ACM Conference on Lisp and Functional Programming,
pages 28–38, 1986.

9. J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 410–423, 1996.

10. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison
Wesley, 1999.

11. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of
the Fifteenth ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 47–57, 1988.

12. Y. Minamide. A new criterion for safe program transformations. In Proceedings
of the Forth International Workshop on Higher Order Operational Techniques in
Semantics (HOOTS), volume 41(3) of ENTCS, Montreal, 2000.

13. Y. Minamide. Selective tail call elimination. Technical Report ISE-TR-03-192,
Institute of Information Sciences and Electronics, University of Tsukuba, 2003.

14. Y. Minamide and J. Garrigue. On the runtime complexity of type-directed un-
boxing. In Proceedings of the Third ACM SIGPLAN International conference on
Functional Programming, pages 1–12, 1998.

15. B. Reistad and D. K. Gifford. Static dependent costs for estimating execution time.
In Proceedings of the 1994 ACM Conference on LISP and Functional Programming,
pages 65–78, 1994.

16. M. Schinz and M. Odersky. Tail call elimination on the Java virtual machine. In
Proceedings of the First International Workshop on Multi-Language Infrastructure
and Interoperability (BABEL), volume 59(1) of ENTCS, 2001.

17. B. Serpette and M. Serrano. Compiling Scheme to JVM bytecode: a performance
study. In Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming, pages 259–270, 2002.

18. D. Tarditi, A. Acharya, and P. Lee. No assembly required: Compiling standard ML
to C. ACM Letters on Programming Languages and Systems (LOPLAS), 1(2):161–
177, 1992.

A Type System of the Target Language

The type system of the target language is defined as a deductive system with
judgments of the form E � N : σ. We do not show the rules for 0, suc(W), and
case-expressions that are the same as those for the source language.

x : σ ∈ E

E � x : σ

E � N : σ′ σ′ ≤ σ

E � N : σ

E, x : σ1 � N : σ2

E � λx.N : σ1 → σ2

E, x : σ1 � N : σ2

E � λtx.N : σ1 →t σ2

E � N1 : σ1 → σ2 E � N2 : σ1

E � @N1N2 : σ2

E � N1 : σ1 →t σ2 E � N2 : σ1

E � @tN1N2 : σ2

E, x : {fun : σ1, tfun : σ2} � W1 : σ1 E, x : {fun : σ1, tfun : σ2} � W2 : σ2

E � fix x.{fun = W1, tfun = W2} : {fun : σ1, tfun : σ2}

E, x : {tfun : σ} � W : σ

E � fixx.{tfun = W} : {tfun : σ}

E � N : {fun : σ1, tfun : σ2}
E � N.fun : σ1

E � N : {tfun : σ}
E � N.tfun : σ

B Operational Semantics of the Target Language

The following are the rules of the operational semantics of the target language.
We write �α N ↓n W if the rule holds for both �N N ↓n W and �T N ↓n W .

�N N1 ↓l λx.N �N N2 ↓m W2 �α N [W2/x] ↓n W

�α @N1N2 ↓max(l,m,n+1) W

�α W ↓0 W
�N N ↓n fixx.{tfun = W}

�α N.tfun ↓n W [fixx.{tfun = W}/x]

�N N ↓n fix x.{fun = W1, tfun = W2}
�α N.tfun ↓n W2[fixx.{fun = W1, tfun = W2}/x]

�N N ↓n fix x.{fun = W1, tfun = W2}
�α N.fun ↓n W1[fixx.{fun = W1, tfun = W2}/x]

C Proof of Soundness

The following lemma is crucial to establish soundness of transformation.

Lemma 3. [[M [V/x]]]≡ [[M]][[[V]]/x].

We prove the main theorem in the following form to simplify case-analysis.

Lemma 4. Let C = max(M) + 1.

1. If ∅ � M : τ ! ρ and �T M ↓k V then �T [[M]] ↓≤Ck+D(ρ) [[V]].
2. If ∅ � M : τ ! ρ and �N M ↓k V then �N [[M]] ↓≤Ck [[V]].

where D(ρ) is a function such that D(i) = i and D(ω) = max(M).

Proof. By mutual induction on the derivations of �T M ↓k V and �N M ↓k V .
Due to lack of space, we show only one case of application for the property 1.
The details of the proof can be found in the technical report [13].

Case: �T @iM1M2 ↓k V is derived from �N M1 ↓l V1 and �N M2 ↓m V2 and
�T M [V1/x][V2/y] ↓n V where V1 ≡ fix x.λj+

y.M and k = max(l, m, n).
From the definition of the type system, j < i. From ∅ � @iM1M2 : τ !ρ,
i ≤ ρ. We also have x : τ ′ →j+

τ, y : τ ′ � M : τ !j.
By the induction hypothesis, �N [[M1]] ↓≤Cl [[V1]] and �N [[M2]] ↓≤Cm [[V2]].
From ∅ � M [V1/x][V2/y] : τ !j, by the induction hypothesis,

�T [[M]][[[V1]]/x][[[V2]]/y] ↓≤Cn+j [[V]]

This case is proved by the following derivation.

�N [[M1]].fun ↓≤Cl λy.[[M]][[[V1]]/x] �N [[M2]] ↓≤Cm [[V2]]
�T [[M]][[[V1]]/x][[[V2]]/y] ↓≤Cn+j [[V]]

�T @([[M1]].fun)[[M2]] ↓≤max(Cl,Cm,Cn+j+1) [[V]]

where max(Cl, Cm, Cn + j + 1) ≤ Ck + D(ρ).

