
Verified Decision Procedures on Context-Free
Grammars

Yasuhiko Minamide

Department of Computer Science
University of Tsukuba

minamide@cs.tsukuba.ac.jp

Abstract. We verify three decision procedures on context-free gram-
mars utilized in a program analyzer for a server-side programming lan-
guage. One of the procedures decides inclusion between a context-free
language and a regular language. The other two decide decision prob-
lems related to the well-formedness and validity of XML documents.
From its formalization, we generate executable code for a balancedness
checking procedure and incorporate it into an existing program analyzer.

1 Introduction

We have been developing a program analyzer for the server-side scripting lan-
guage PHP, which approximates the string output of a program with a context-
free grammar [8]. We adopted and developed several advanced decision pro-
cedures on context-free grammars to check properties of a program with the
analyzer [9, 17]. Although the correctness of those decision procedures is often
intuitively clear, their detailed proofs can be rather complicated. That motivated
us to verify them by using a proof assistant.

In this paper, we verify three procedures on context-free grammars used in
our analyzer in Isabelle/HOL [13]. They decide the following three problems:

– inclusion between a context-free language and a regular language;
– whether a context-free language is balanced or not;
– inclusion between a context-free language and a regular hedge language.

The second and third procedures are used to check the well-formedness and
validity, respectively, of dynamically generated XML documents in the analyzer.

Of the three decision procedures, we generated executable code of the second,
the balancedness checking procedure, with Isabelle’s code generator. Although
the formalization of the procedure is almost executable, the formalization must
be revised to obtain executable code and achieve reasonable efficiency. We in-
corporated the generated code into the PHP string analyzer by replacing the
corresponding handwritten code. The analyzer with the generated code has been
applied successfully to real PHP programs.

Our formalization and verification were conducted using the development
version of Isabelle. We made positive use of new features introduced in the

development version, such as a new function definition package by Krauss [7]
and the revised locale mechanism, which make it possible to write proof scripts
in a more natural manner. The proof scripts of the formalization in this paper
are available from http://www.score.cs.tsukuba.ac.jp/~minamide/cfgv/.

2 Context-Free Grammars

In this section, we formalize context-free grammars (CFGs) and several basic
procedures on them. The decision procedures in this paper are based on inter-
pretation of a CFG over a monoid. The interpretation can be naturally formalized
by considering a CFG over the monoid. Thus, we extend the notion of CFGs
and formalize CFGs over a monoid.

2.1 Formalization of CFGs

To simplify our formalization, we only consider a grammar in a normal form
such that each production has one of the forms: x → a and x → yz where x,
y, and z are nonterminals (variables) and a is a terminal. A CFG is represented
with the following record type:

record (′v , ′a) cfg =
prod1 :: (′v × ′a) set
prod2 :: (′v × ′v × ′v) set
start :: ′v

where ′v and ′a are the types of nonterminals and terminals, respectively. This
declaration introduces a record type with three fields prod1, prod2, and start.
The fields prod1 and prod2 contain productions of the form x→ a and x→ yz,
respectively. A component of a record can be accessed with the field name, e.g.;
prod1 r accesses the prod1 field of a record r. A CFG over strings is modeled
with type (′v , ′a list) cfg. Note that this type permits a production of the form
x→ w for any sting w. Thus, the normal form above is not as strict as Chomsky
normal form.

Although a grammar itself can be given without considering a monoid oper-
ation, the operation is necessary to define the language of the grammar. The set
of monoid elements generated from a nonterminal is defined as an inductively
defined relation: (x ,v) ∈ derive cfg opr formalizes “v is derived from nonterminal
x”.

derive :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a] ⇒ (′v × ′a) set
inductive derive cfg opr
(x ,v) ∈ prod1 cfg =⇒ (x ,v) ∈ derive cfg opr
[[(y ,v) ∈ derive cfg opr ; (z ,w) ∈ derive cfg opr ; (x ,y ,z) ∈ prod2 cfg]] =⇒

(x ,opr v w) ∈ derive cfg opr

For a CFG over strings, concatenation of lists, the infix operator @ in Isabelle,
is used for opr. Although this relation is defined even if opr does not satisfy the
laws of monoids, we only use opr satisfying the laws in this paper. The language
of a CFG is the set of monoid elements derived from the start symbol.

lang-of :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a] ⇒ ′a set
lang-of cfg opr ≡ { v . (start cfg , v) ∈ derive cfg opr}

2.2 Computing the Language of a CFG over a Finite Monoid

The language of a CFG can also be characterized as a fixed point of a monotone
function over ′v ⇒ ′a set below.

onestep :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v ⇒ ′a set] ⇒ ′v ⇒ ′a set
onestep cfg opr m x ≡ m x ∪ {v . (x ,v) ∈ prod1 cfg} ∪

{opr v w | v w . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ v ∈ m y ∧ w ∈ m z}

The fixed point of this function can be computed if we consider a CFG over a
finite monoid. The procedure can be formalized as follows using the predefined
while-combinator in Isabelle.

compute-langs :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v] ⇒ ′a set
compute-langs cfg opr ≡

while (λx . onestep cfg opr x �= x) (onestep cfg opr) (λx . {})

The following equality is proved by the rule of Hoare logic for while formalized
in Isabelle.

theorem fixes cfg ::(′v ::finite, ′a::finite) cfg
shows compute-langs cfg opr x = {v . (x ,v) ∈ derive cfg opr}

To guarantee that the while loop terminates, both the sets of nonterminals and
terminals must be finite. The constraints are given as the type class finite of ′v
and ′a.

2.3 Image of a Context-Free Language

An interpretation of a CFG with a monoid is considered as an image of its
language under a homomorphism to the monoid.

Let us consider a homomorphism h between monoids ′a and ′b. A standard
result of the theory of CFGs is that the image of a context-free language (CFL)
over ′a under the homomorphism h is a CFL over ′b. This is shown by construct-
ing a grammar over ′b as follows:

image-of :: [(′v , ′a) cfg , ′a ⇒ ′b] ⇒ (′v , ′b) cfg
image-of cfg f ≡

(| prod1 = prod1 cfg 	 rel-of f , prod2 = prod2 cfg , start = start cfg |)

where s � t is the composition1 of two relations and rel-of converts a function
into a relation.

s 	 t ≡ {(x ,z). ∃ y . (x ,y) ∈ s ∧ (y ,z) ∈ t} rel-of f ≡ {(x ,y). f x = y}
1 The order of the arguments is different from the standard composition operator in

Isabelle/HOL.

Then, the following formalizes the result above.

theorem assumes ∀ v w . h (opr v w) = opr ′ (h v) (h w)
shows lang-of (image-of cfg h) opr ′ = h ‘ lang-of cfg opr

where h ‘ xs is the image of the set xs under the function h.

2.4 Reachable and Generating Nonterminals

We formalize two basic procedures on CFGs: computing the set of reachable
nonterminals and computing the set of generating nonterminals. The latter pro-
cedure is then extended to generate a witness for each generating nonterminal.

We say a nonterminal X is reachable if there exists a derivation S
∗⇒ αXβ

where α and β are strings over terminals and nonterminals, and S is the start
symbol. The standard procedure to compute the set of reachable nonterminals
applies depth-first search by considering production rules as a graph.

A CFG is converted into a graph with next-rel and, we formalize reachability
based on the graph as follows.

next-rel cfg ≡ {(x ,y). ∃ z . (x ,y ,z) ∈ prod2 cfg} ∪ {(x ,z). ∃ y . (x ,y ,z) ∈ prod2 cfg}
reachable cfg xs ≡ (next-rel cfg)∗ ‘‘ xs

where r ‘‘ xs is the image of the set xs under the relation r.
We formalize a depth-first search to compute the set of reachable nontermi-

nals as follows.

function
dfs :: [(′v ::finite, ′a) cfg , ′v list , ′v set] ⇒ ′v set where
dfs cfg [] ys = ys
dfs cfg (x#xs) ys =

(if x ∈ ys then dfs cfg xs ys else dfs cfg (nexts cfg x@xs) (insert x ys))

The function nexts cfg x computes a list of nodes adjacent to x. This formal-
ization is almost identical to a depth-first search we write in a functional pro-
gramming language. It is shown that this function always terminates by a lex-
icographic order similar to that used by Moore in his formalization of a graph
search algorithm [10]. The correctness of this procedure is verified as the follow-
ing theorem.

theorem dfs cfg (nexts cfg x) {x} = reachable cfg {x}

We say a nonterminal X is generating if X ∗⇒ w where w is a terminal string.
The following is a formalization of a standard algorithm to compute generating
nonterminals, which is considered as a fixed-point computation.

genv-onestep :: [(′v , ′a) cfg , ′v set] ⇒ ′v set
genv-onestep cfg m ≡ m ∪ {x . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ y ∈ m ∧ z ∈ m}

genv :: (′v , ′a) cfg ⇒ ′v set
genv cfg ≡

while (λx . genv-onestep cfg x �= x) (genv-onestep cfg) {x . ∃ v . (x ,v) ∈ prod1 cfg}

Each iteration adds the nonterminals that are shown to be generating by genv-
onestep from the nonterminals obtained in the previous iteration. The correct-
ness of the function is proved as follows.

lemma fixes cfg ::(′v ::finite, ′a) cfg
shows genv cfg = {x . ∃w . (x ,w) ∈ derive cfg opr}

The function genv is extended to obtain a map of type s ⇀ t, which gives
a witness for each generating nonterminal, i.e., a string generated from it. Type
s ⇀ t is a synonym of s ⇒ t option. The extended procedure is used in the
balancedness checking procedure in Section 4.

To extend genv naturally, we use the function choose defined below

choose xs ≡ if xs �= {} then Some (SOME x . x∈xs) else None

The expression SOME x . P x represents an arbitrary element x satisfying P x.
If there is no such element, it is an arbitrary element.

We thus obtain the following function that gives a witness for each generating
nonterminal.

genv-onestep ′ :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v ⇀ ′a] ⇒ ′v ⇀ ′a
genv-onestep ′ cfg opr m ≡
(λx . if x ∈ dom m then m x

else choose {opr w1 w2 | w1 w2 . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ m y = Some w1 ∧
m z = Some w2})

genv ′ :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a] ⇒ ′v ⇀ ′a
genv ′ cfg opr ≡ while (λx . genv-onestep ′ cfg opr x �= x) (genv-onestep ′ cfg opr)

(λx . choose {v . (x ,v) ∈ prod1 cfg})

The structures of genv and genv ′ are almost identical, and thus we can easily
show the following lemma.

lemma fixes cfg ::(′v ::finite, ′a) cfg shows dom (genv ′ cfg opr) = genv cfg

3 Decision Procedure for Inclusion between a CFL and a
Regular Language

We verify a decision procedure checking inclusion L(G) ⊆ L(M) for a CFGG and
a nondeterministic finite automaton M . Textbooks on formal languages usually
describe a decision procedure for this problem based on product construction of a
pushdown automaton and a finite automaton. On the other hand, the procedure
in this section directly operates on a grammar. It is a variant of the context-
free graph reachability algorithm of Reps [15]. We use Nipkow’s formalization of
automata in Isabelle [12].

3.1 Nipkow’s Formalization of Automata

We review Nipkow’s formalization of nondeterministic automata. Nipkow for-
malized an automaton as a triple of a start state, a transition function, and a
predicate defining final states. The following is its reformulation with a record
type:

record (′a, ′s) na =
start :: ′s
next :: [′a, ′s] ⇒ ′s set
fin :: ′s ⇒ bool

where ′a and ′s are the types of an alphabet and states, respectively. The for-
malization itself allows the set of states to be infinite.

Then, the extended transition function delta over lists and the function ac-
cepts describing accepted strings are defined in the standard manner:

delta A [] p = {p}
delta A (a#w) p = Union(delta A w ‘ next A a p)

accepts A w ≡ ∃ q ∈ delta A w (start A). fin A q

where the function Union gives the union of a set of sets and has type ′a set set
⇒ ′a set.

3.2 Transition Monoid

The following theorem states that a regular language is characterized by a finite
monoid [4].

Theorem 1. Let Σ be a finite alphabet. The following are equivalent for L ⊆
Σ∗.

1. L is regular.
2. There exist a finite monoid M, a homomorphism h : Σ∗ → M, a subset

B ⊆ M such that L = h−1(B).

One of the easiest ways to construct the monoid, the homomorphism, and the
subset in the theorem is to consider a monoid of relations over states, where the
composition of relations plays the role of the monoid operation. This monoid of
relations over states and the homomorphism associated with it implicitly appear
in Nipkow’s formalization. The function steps in the formalization translates a
string into a relation and has the following property.

steps A w = {(p,q). q ∈ delta A w p}

This function plays the role of the homomorphism in the theorem.
In addition to Nipkow’s formalization, we introduce the following function,

where final-of na plays the role of B in the theorem for the nondeterministic
automaton na.

final-of :: (′a, ′s) na ⇒ (′s × ′s) set set
final-of na ≡ {r . ∃ q . (start na, q) ∈ r ∧ fin na q}

Then, the following is a formalization of the theorem in Isabelle, which can be
easily proved with the lemmas provided in Nipkow’s formalization.

theorem steps na w ∈ final-of na ←→ accepts na w

3.3 Decision Procedure

With the formalization of CFGs and automata, it is quite easy to formalize a
decision procedure to check inclusion between the languages of a CFG and a
nondeterministic finite automaton. The inclusion can be checked by interpreting
a grammar with the monoid characterizing the regular language. We obtain the
expression to compute the interpretation over (′s × ′s) set as follows.

(steps na) ‘ lang-of cfg (op @)
= lang-of (image-of cfg (steps na)) (op)
= compute-langs (image-of cfg (steps na)) (op) (start cfg)

This can then be used as the decision procedure as follows.

theorem fixes cfg :: (′v ::finite, ′a list) cfg and na :: (′a, ′s::finite) na
shows lang-of cfg (op @) ⊆ {w . accepts na w} ←→
compute-langs (image-of cfg (steps na)) (op) (start cfg) ⊆ final-of na

The type system of Isabelle recognizes that the type (′s × ′s) set is an instance
of finite from s::finite. Hence, we can compute the language and decide inclusion
between finite sets of type (′s × ′s) set.

4 Balancedness Checking Procedure

We introduce a CFG over a paired alphabet and verify a balancedness checking
procedure that decides whether the language of a grammar is balanced or not.
The procedure was developed by Berstel and Boasson [2] and the formalization
in this paper is based on [9].

4.1 Balanced Strings

For a base alphabet A, we consider a paired alphabet consisting of two sets Á
and À:

Á = { á | a ∈ A } À = { à | a ∈ A }
The elements of Á and À are considered as left and right parentheses: á and à
match. The fundamental notion on a string over a paired alphabet is whether it
is balanced. For example, áb́b̀ćc̀à and áàb́b̀ are balanced, but áb̀ and áb́b̀ are not.
We call the set of all balanced strings the Dyck set [1]. A language L is balanced
if all φ ∈ L are balanced.

We formalize strings over a paired alphabet as lists over the following data
type.

datatype ′a balphabet = L ′a | R ′a

Then, the set of balanced strings, the Dyck set, is formalized as the following
inductively defined set.

dyckset :: ′a balphabet list set
inductive dyckset

[] ∈ dyckset
xs ∈ dyckset =⇒ [L x]@xs@[R x] ∈ dyckset
[[xs ∈ dyckset ; ys ∈ dyckset]] =⇒ xs@ys ∈ dyckset

4.2 Monoid for Balancedness Checking

The Dyck set is not regular and thus cannot be characterized with a finite
monoid. However, there is an infinite monoid, that makes it possible to decide
whether the language of a CFG is balanced or not.

We say a string φ is partially balanced if it is a substring of some balanced
string. Each partially balanced φ can be uniquely factorized into the following
form:

φ = φ1à1φ2à2 . . . φnànϕb́mψm · · · b́2ψ2b́1ψ1

where φi, ψi, and ϕ are all balanced. We say à1à2 . . . ànb́m · · · b́2b́1 the reduced
form of the string and write ρ(φ) for it. The set of reduced forms À∗Á∗ with ⊥
constitute a monoid, where ⊥ represents the reduced form of unbalanced strings.
The balancedness checking procedure is developed based on this monoid.

We formalize the monoid over À∗Á∗ ∪ {⊥} with the following data type:

datatype ′a bmonoid = B ′a list ′a list | Bot

where B [a1, a2, . . . , an] [b1, b2, . . . , bm] represents à1à2 . . . ànb́m · · · b́2b́1, and B []
[] is the unit of the monoid.

Let φ and ψ be partially balanced strings. The monoid operation between
their reduced forms is defined by considering that of their concatenation φψ. It
is formalized as follows.

function
concat :: [′a bmonoid , ′a bmonoid] ⇒ ′a bmonoid (infixr ♦ 65) where
B cs1 [] ♦ B cs2 ss2 = B (cs1@cs2) ss2
B cs1 ss1 ♦ B [] ss2 = B cs1 (ss2@ss1)
B cs1 (s#ss1) ♦ B (c#cs2) ss2 = (if s = c then B cs1 ss1 ♦ B cs2 ss2 else Bot)
Bot ♦ y = Bot
x ♦ Bot = Bot

Intuitively, it is clear that this operation is associative. On the other hand, the
proof of this is not straightforward. We derive an equivalent definition of the
function using the prefix relation of lists and prove associativity based on the
definition.

With the monoid laws of ′a bmonoid, it is straightforward to show that
h defined below is a homomorphism from lists over a paired alphabet to the
monoid.

hom-of :: [′a ⇒ ′b bmonoid , ′a list] ⇒ ′b bmonoid
hom-of h [] = B [] []
hom-of h (x#xs) = h x ♦ hom-of h xs

h ≡ hom-of (λx . case x of L x ⇒ B [] [x] | R x ⇒ B [x] [])

Finally, we show that the Dyck set is characterized by this monoid.

theorem xs ∈ dyckset ←→ h xs = B [] []

The implication from left to right is easily proved by induction on the derivation
of xs ∈ dyckset. The other direction is rather difficult to prove. We introduce a
notion similar to the partially balanced string as an inductively defined set and
prove: xs /∈ dyckset −→ h xs 	= B [] [].

For balancedness checking, we also introduce an ordering over reduced forms,
which was used to improve the time complexity of a balancedness checking pro-
cedure in [9]. The ordering is defined as follows.

à1 · · · ànćm · · · ć1 ≤ à1 · · · ànb̀1 · · · b̀j b́j · · · b́1ćm · · · ć1
This is formalized as the following order over bmonoid.

b1 ≤ b2 ≡ (∃ cs ss zs. b1 = B cs ss ∧ b2 = B (cs@zs) (ss@zs))
∨ (b1 = Bot ∧ b2 = Bot)

4.3 Decision Procedure

Because the monoid introduced in the previous subsection is infinite, it does not
directly give rise to a balancedness checking procedure. However, it is shown
that balancedness can be checked by generating the monoid elements derived
from each nonterminal to some bound.

In this section, we assume that a CFG is reduced. This means that every
nonterminal is accessible from the start symbol and every nonterminal produces
at least one terminal string. This condition is expressed with the following con-
ditions on cfg in Isabelle.

∀ x . x ∈ reachable cfg {start cfg} ∀ x . ∃w . (x , w) ∈ derive cfg opr

Because we assume that a grammar is reduced, for each nonterminal X, we
can find terminal strings φ1 and φ2 such that S ∗⇒ φ1Xφ2. We then have S ∗⇒
φ1ψφ2 for any ψ such that X ∗⇒ ψ. For φ1ψφ2 to be balanced, the reduced forms
of φ1 and φ2 must be the following forms: ρ(φ1) = án . . . á1 and ρ(φ2) = b̀1 · · · b̀m.
Furthermore, we have ρ(ψ) ≤ àn . . . à1b́1 · · · b́m. This observation is formalized
as the following lemmas for bmonoid.

lemma assumes b1 ♦ b2 ♦ b3 = B [] []
shows (∃ ss. b1 = B [] ss) ∧ (∃ cs. b3 = B cs [])

lemma assumes B [] ss ♦ b ♦ B cs [] = B [] [] shows b ≤ B ss cs

These properties enable us to use àn . . . à1b́1 · · · b́m above as a bound when we
check the balancedness of the language of a grammar.

We have the following decision procedure based on the observation so far by
considering the interpretation of a CFG over the monoid.

1. Compute φ1 and φ2 such that S ∗⇒ φ1Xφ2 for each nonterminal X.
2. Generate the monoid elements derived from each nonterminal to the bound

determined by φ1 and φ2.
3. If the bound is exceeded for some nonterminal, then the language is not

balanced. Otherwise, the language is balanced iff the start symbol only gen-
erates the unit element, i.e., B [] [] in Isabelle.

The first step of the procedure is based on the procedures to compute reach-
able and generating nonterminals. First, we must compute a witness for each
generating nonterminal by the procedure in Section 2.4. Then, we apply a depth-
first search procedure to compute φ1 and φ2 above. Then, from φ1 and φ2, the
bound is constructed by the following function.

mkbound (B [] ss, B cs []) = B ss cs

The depth-first search procedure computes paths from the start symbol to all
the reachable nonterminals, where a path corresponds to a pair φ1 and φ2 above.
Please refer to the proof script for details.

The second step of the procedure is easily formalized as follows, where the
bound is given as a function bounds.

compute-langs ′ :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v ⇒ ′a set , ′v] ⇒ ′a set
compute-langs ′ cfg opr bounds ≡

while (λm. onestep cfg opr m �= m ∧ (∀ x . m x ⊆ bounds x))
(onestep cfg opr) (λx . {})

If bounds x is finite for all x, the function terminates.
The following is the formalization of the whole decision procedure, where

mkcon is the depth-first search procedure and finds a bound, a pair of φ1 and φ2

above, for each nonterminal by using a function gf giving a generated monoid
element for each nonterminal.

bcheck cfg ≡
(let gf = λx . the (genv ′ cfg (op ♦) x);

con = λx . the (mkcon (op ♦) (B [] []) cfg gf (start cfg) x) in
(∀ x . ∃ ss cs. con x = (B [] ss, B cs [])) ∧
(let bounds = λx . {b. b ≤ mkbound (con x)};

result = compute-langs ′ cfg (op ♦) bounds in
∀ x . result x ≤ bounds x ∧ result (start cfg) = {B [] []}))

The correctness of this procedure is verified in the following sense.

theorem fixes cfg ::(′v ::finite, ′a balphabet list) cfg
assumes ∀ x . ∃w . (x , w) ∈ derive cfg (op @)

∀ x . x ∈ reachable cfg {start cfg}
shows bcheck (image-of cfg h) ←→ lang-of cfg (op @) ⊆ dyckset

5 Decision Procedure for Inclusion between a
Context-Free Language and a Regular Hedge Language

We formalize a decision procedure deciding inclusion between a context-free
language and a regular hedge language [11]. The procedure can be considered
as a combination of the previous two decision procedures, and was developed by
Minamide and Tozawa [9].

5.1 Hedges and Balanced Strings

We call a sequence of trees over the unranked alphabet Σ a hedge. The sets of
trees and hedges denoted by t and h are defined as follows:

t ::= a〈h〉
h ::= ε | t h

where a ∈ Σ. We write H(Σ) for the set of hedges over Σ. By expanding t in
the definition of hedges, hedges can also be defined as follows.

h ::= ε | a〈h〉h
We formalize this definition as the following datatype in Isabelle.

datatype ′a hedge = Empty | Br ′a ′a hedge ′a hedge

Hedges can be considered as balanced strings by the following function.

hedge2word :: ′a hedge ⇒ ′a balphabet list
hedge2word Empty = []
hedge2word (Br a xs ys) = [L a]@hedge2word xs@[R a]@hedge2word ys

It is shown that this function is injective and its range is the set of balanced
strings. The key to proving these properties is the following property of balanced
strings. It is proved by using the monoid in Section 4.

lemma assumes [L a]@xs1@[R a]@xs2 = [L a]@ys1@[R a]@ys2
xs1 ∈ dyckset ys1 ∈ dyckset

shows xs1=ys1 ∧ xs2 = ys2

5.2 Regular Hedge Grammars and Binoids

A regular hedge grammar (RHG) is a grammar over hedges with production
rules of the following forms.

X → ε X → a〈Y 〉Z
The set of hedges generated by a RHG is called a regular hedge language (RHL).
It is basically a regular tree language over an unranked alphabet.

RHGs are formalized with the following record type as CFGs, and the deriva-
tion and the language of a RHG are formalized in the same manner as those of
CFGs.

record (′v , ′a) rhg =
prod1 :: ′v set
prod2 :: (′v × ′a × ′v × ′v) set
start :: ′v

Pair and Quere showed that a RHL is characterized with an algebra called
binoid [14]. A binoid B over Σ is a monoid with the following additional opera-
tion.

(̂) : Σ × B → B
For example, the set of hedges itself constitutes a binoid, where the monoid
operation is the concatenation of two hedges and the additional operation above
is one that builds a〈h〉 from a and h.

The following shows that a RHL can be characterized with a finite binoid.

Theorem 2. The following are equivalent for a set of hedges L ⊆ H(Σ).

1. L is regular.
2. There exist a finite binoid B, a homomorphism h : H(Σ) → B, a subset

B ⊆ B such that L = h−1(B).

The binoid satisfying the theorem above can be obtained by considering a
monoid of relations over nonterminals. The additional operation (̂) is defined
as up rhg a b for a and b below.

up :: [(′v , ′a) rhg , ′a, (′v × ′v) set] ⇒ (′v × ′v) set
up rhg a b ≡ {(x ,y) |x y . ∃ (z , f) ∈ b. f ∈ prod1 rhg ∧ (x ,a,z ,y) ∈ prod2 rhg}

Although this binoid is used in the decision procedure for CFL-RHL inclu-
sion, any binoid that satisfies the theorem is also suitable for the procedure.
Thus, we introduce the locale binoid below and describe the main part of the
procedure in the locale. Finally, we obtain our decision procedure by instantiat-
ing it to the binoid above.

locale binoid =
fixes up :: [′a, ′b] ⇒ ′b
fixes prod :: [′b, ′b] ⇒ ′b (infixr ˚ 70)
fixes unit :: ′b
assumes assoc: (x ˚ y) ˚ z = x ˚ y ˚ z
assumes unitl : unit ˚ x = x
assumes unitr : x ˚ unit = x

5.3 Monoid for CFL-RHL Inclusion

Let us assume that a RHL is characterized with a binoid B, a homomorphism
◦, and a set B. The idea of the decision procedure is to interpret a set of

strings generated from each nonterminal by using elements of the B. However,
each string φ such that X ∗⇒ φ is not necessarily balanced, but rather partially
balanced. Therefore, we again use the factorization of φ:

φ = φ1à1φ2à2 . . . φnànϕb́mψm · · · b́2ψ2b́1ψ1

where φi, ψi, and ϕ are all balanced. Then, we interpret φ with an element of
(BΣ)∗B(ΣB)∗ as follows:

φ◦1à1φ
◦
2à2 . . . φ

◦
nànϕ

◦b́mψ◦
m · · · b́2ψ◦

2 b́1ψ
◦
1

where ◦ is applied to balanced strings by considering them hedges. This is the
ideas of the decision procedure.

The elements of the set (BΣ)∗B(ΣB)∗ ∪ {⊥} constitute a monoid, and it is
represented by the following datatype:

datatype (′b, ′a) bmonoid = B (′b × ′a) list ′b (′b × ′a) list | Bot

where ′b and ′a are the types for B and Σ, respectively.
Then, by using the locale binoid we formalize the monoid operation with the

following function, where concat x y z is written as x�y�z with Isabelle’s mixfix
annotation.

function (in binoid)
concat :: [(′b, ′a) bmonoid , ′b, (′b, ′a) bmonoid] ⇒ (′b, ′a) bmonoid where
B cs1 b1 [] CxB B [] b2 ss2 = B cs1 (b1˚x˚b2) ss2
B cs1 b1 [] CxB B ((cb2 ,c2)#cs2) b2 ss2 = B (cs1@(b1˚x˚cb2 ,c2)#cs2) b2 ss2
B cs1 b1 ((sb1 ,s1)#ss1) CxB B [] b2 ss2 = B cs1 b1 (ss2@(sb1˚x˚b2 ,s1)#ss1)
B cs1 b1 ((sb1 ,s)#ss1) Cx B B ((cb2 ,c)#cs2) b2 ss2 =
(if s = c then B cs1 b1 ss1 C up s (sb1˚x˚cb2) B B cs2 b2 ss2 else Bot)

Bot CxB b = Bot
b CxB Bot = Bot

The monoid operation is then λxy .x�unit�y, where unit is the unit of the binoid.
The rest of the decision procedure is quite similar to the balancedness check-

ing procedure and is formalized in the same manner.

6 Executing a Verified Decision Procedure

We generated executable code of the balancedness checking procedure from our
formalization with Isabelle’s code-generating facility [6]. The generated proce-
dure was incorporated into the PHP string analyzer [8] by replacing the corre-
sponding handwritten procedure. The analyzer checks whether a PHP program
always generates a well-formed XHTML document with the procedure. The re-
vised analyzer was tested on real PHP programs. We describe issues that arose
during this experiment.

The formalization of the balancedness checking procedure we have described
is almost executable, but still requires some revisions to obtain executable code.
We have formalized decision procedures as abstractly as possible by using set
and s ⇀ t instead of concrete data structures. They are barriers to generating
code and making it efficient.

Isabelle has the library ExecutableSet, which allows us to generate code for
finite sets using lists. We generated executable code for sets with this library, but

some revisions of the formalization and an extension of the library were required.
We explain the issues with the procedure for computing the set of generating
nonterminals with a witness.

genv-onestep ′ cfg opr m ≡
(λx . if x ∈ dom m then m x

else choose {opr w1 w2 | w1 w2 . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ m y = Some w1 ∧
m z = Some w2})

genv ′ cfg opr ≡ while (λx . genv-onestep ′ cfg opr x �= x) (genv-onestep ′ cfg opr)
(λx . choose {v . (x ,v) ∈ prod1 cfg})

The first issue is the set comprehension in the formalization. The definition
includes the following set comprehension: {v . (x ,v) ∈ prod1 cfg}. Although this
set is finite if prod1 is finite, this is not explicit in the expression and executable
code cannot be directly generated from it. To obtain executable code, we must
revise the formalization by using the following property.

{v . (x , v) ∈ prod1 cfg} =
S

(x ′, v)∈prod1 cfg . if x = x ′ then {v} else {}

The second problem concerns the choose function in the definition. The def-
inition of choose uses SOME, i.e., Hilbert’s ε, for which code generation is not
supported by the library. Furthermore, it appears that the code of choose cannot
be implemented faithfully with lists. If choose is implemented with choosel over a
list, then choosel xs = choosel ys should hold for lists xs and ys representing the
same set. This property cannot be satisfied without any additional structure on
its elements. To overcome this issue, we revised our formalization so that choose
is used only for sets over types that are instances of linorder. The definition of
choose was also revised so that it chooses the minimum element in a set.

We could generate code with these revisions. However, to obtain code with
reasonable efficiency, more revisions were required. In our experiments, we rep-
resented nonterminals with type int in the ML side. Because the set of elements
of int is finite and linearly ordered, the type satisfies the required conditions to
use it as the type of nonterminals. However, the following two issues arise.

We verified the correctness of our decision procedures under the assumption
that all nonterminals are generating and reachable. This simplified our verifi-
cation, but it is not reasonable to assume it when we represent nonterminals
with type int in ML. Thus, we revised our formalization so that the procedures
assume that only the nonterminals used in a CFG are generating and reachable.

Finally, the evaluation strategy of functional programming languages be-
comes an issue for efficient execution: they do not evaluate the expression inside
a lambda abstraction. In the decision procedure, type s ⇀ t is used to rep-
resent finite maps. The type is actually a function type to option type. Then,
all the computation related to a map is delayed until the map is applied to an
argument. That caused an exponential blowup of execution time. To avoid this
blowup, we insert the function reduce-fun with the following type into the places
where evaluation inside a lambda abstraction is desirable.

reduce-fun :: [′a::{finite,linorder} set , ′a ⇒ ′b] ⇒ ′a ⇒ ′b

An expression reduce-fun f s forces the evaluation of f for the values in the set
s and reconstructs the function. For the definition of the function, please refer
to the proof script.

By applying these revisions, we could run the analyzer with the code gener-
ated by Isabelle for real PHP programs. We tested it on two PHP programs, for
which the analyzer generated CFGs with 170 and 70 production rules. With the
handwritten code, the balancedness can be checked very quickly, taking 0.016
and 0.003 seconds for the two programs. On the other hand, the generated code
was quite slow, taking 32.6 and 16.7 seconds. We checked execution times for
each part of the procedure and found that the depth-first search is efficient, but
the fixed-point computations used in genv ′ and compute-langs ′ are very slow.
We think that this is because the formalization of depth-first search is very close
to a standard implementation, but the formalization of the fixed-point computa-
tion is rather abstract. It will be necessary to revise its formalization and adopt
a more efficient data structure to represent finite maps to obtain more efficient
code.

7 Related Work

Our formalization is strongly influenced by Nipkow’s formalization of automata,
which formalizes automata and regular expressions, and verifies a lexical analyzer
obtained from a regular expression [12]. There have been several other attempts
to formalize the theory of formal languages in a proof assistant. Courant and
Filliâtre formalized regular and context-free languages in Coq [3]. The formal-
ization includes some standard theory of context-free languages such as trans-
formation between a context-free grammar and a pushdown automaton. Rival
and Goubault-Larrecq formalized tree automata in Coq [16] and executed some
procedures on tree automata in Coq.

We have described several issues in obtaining an (efficient) executable bal-
ancedness checking procedure in Section 6. The importance of obtaining efficient
executable code from an elegant formalization is recognized in the context of
ACL2. Greve et al. reviewed issues there and described the features in ACL2 to
support it [5]. This will be good guide to obtain really efficient executable code
for our decision procedures.

8 Conclusion

We have verified three precision procedures on context-free grammars. The for-
malization and verification of the procedures went smoothly and took me about
non-intensive two months. On the other hand, the revisions to generate exe-
cutable code for the balancedness checking procedure required more time than
we expected.

We plan to generate code for the other two procedures. Although code will
be generated in the same manner as the balancedness checking procedure, we
expect a more severe problem with efficiency. It is because the relations over
states or nonterminals used there will become too large if int are used in the
ML side.

References

1. Jean Berstel. Transductions and Context-Free Languages. Teubner Studienbucher,
1979.

2. Jean Berstel and Luc Boasson. Formal properties of XML grammars and languages.
Acta Informatica, 38(9):649–671, 2002.

3. Judicael Courant and Jean-Christophe Filliâtre. Beginning of formal language
theory, 1993. http://coq.inria.fr/contribs-eng.html.

4. Samuel Eilenberg. Automata, Languages, and Machines, chapter 3. Academic
Press, 1974.

5. David A. Greve, Matt Kaufmann, et al. Efficient execution in an automated rea-
soning environment. Journal of Functional Programming, 2007. to appear.

6. Florian Haftmann. Code generation from Isabelle/HOL theories, 2007. available
in the Isabelle distribution.

7. Alexander Krauss. Partial recursive functions in higher-order logic. In Automated
Reasoning, Third International Joint Conference, volume 4130 of LNCS, pages
589–603, 2006.

8. Yasuhiko Minamide. Static approximation of dynamically generated Web pages. In
Proceedings of the 14th International World Wide Web Conference, pages 432–441.
ACM Press, 2005.

9. Yasuhiko Minamide and Akihiko Tozawa. XML validation for context-free gram-
mars. In Proc. of The Fourth ASIAN Symposium on Programming Languages and
Systems, volume 4279 of LNCS, pages 357–373, 2006.

10. J Strother Moore. An exercise in graph theory. In Matt Kaufmann, Panagiotis
Manolios, and J Strother Moore, editors, Computer-Aided Reasoning: ACL2 Case
Studies, chapter 5, pages 41–74. Kluwer Academic Publishers, 2000.

11. Makoto Murata. Hedge automata: a formal model for XML schemata, 1999.
http://www.xml.gr.jp/relax/hedge nice.html.

12. Tobias Nipkow. Verified lexical analysis. In Theorem Proving in Higher Order
Logics, volume 1479 of LNCS, pages 1–15, 1998.

13. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

14. C. Pair and A. Quere. Définition et étude des bilangages réguliers. Information
and Control, 13(6):565–593, 1968.

15. Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11–12):701–726, 2000.

16. Xavier Rival and Jean Goubault-Larrecq. Experiments with finite tree automata
in Coq. In Proc. 14th Int. Conf. Theorem Proving in Higher Order Logics
(TPHOL’01), volume 2152 of LNCS, pages 362–377, 2001.

17. Akihiko Tozawa and Yasuhiko Minamide. Complexity results on balanced context-
free languages. In Proc. of Tenth International Conference on Foundations of
Software Science and Computation Structures, volume 4423 of LNCS, pages 346–
360, 2007.

