
Compilation Based on a Calculus for Explicit Type Passing

Yasuhiko Minamide

Research Institute for Mathematical Sciences� Kyoto University

Kyoto� ������� JAPAN

E�mail� nan�kurims�kyoto�u�ac�jp

ABSTRACT

We propose several calculi for explicit type passing that enable us to formalize
compilation of polymorphic programming languages like ML as phases of type�
preserving translations� In our calculi various manipulations for type parameters
can be expressed without typing problems�this is impossible in the polymorphic
��calculi� Furthermore� we develop the translation from an explicit typed source
calculus similar to Core�XML to one of the proposed calculi which completely
eliminates runtime construction type parameters� We propose an intermediate
language based on this calculus� and discuss an implementation of a compiler
for Core Standard ML�

�� Introduction

One of the advantages of typed programming languages is that type information
can be productively used to obtain e�cient executable programs� However� in the
presence of polymorphism� a type in a program may contain type variables and cannot
be determined as a ground type at compile time� This has been one of the main di��
culties in developing implementations of ML which e�ectively utilize type information
obtained from type inference� In order to overcome this problem two approaches to
utilizing type information for compilation have been proposed recently�
The �rst approach is representation analysis proposed by Leroy �	
�� which is based

on coercions between monomorphic and polymorphic types� Although the polymor�
phic parts of a program must use uniform representation� the monomorphic parts can
be compiled e�ciently by using type information� It was reported that the compilers
based on this approach improved the performance of executable programs �	
� �	��
More aggressive approach is to use type information by passing types as actual

parameters �	
� �� �� ��� ��� as in the second order ��calculus� The advantage of
this approach is that even for a polymorphic type the actual type is known as an
instance at runtime and can be used for several purposes� For example� Tolmach
implemented tag�free garbage collection by passing type parameters ����� Harper and
Morrisett proposed a general mechanism for using types at runtime called intensional
type analysis ���� In Tolmach�s implementation it is shown that explicit type passing
is not so expensive as one might think�

In this paper� we propose several calculi for explicit type passing that enable us
to formalize compilation of polymorphic programming languages like ML as phases
of type�preserving translations� In our calculi� various manipulations for type pa�
rameters can be expressed without typing problems� which is impossible in standard

	



polymorphic ��calculi� Furthermore� we propose the translation from a source calcu�
lus similar to Core�XML to one of the proposed calculi which completely eliminates
runtime construction of type parameters� Based on the calculus� we propose an in�
termediate language and discuss an implementation of an experimental compiler for
Core Standard ML �	���
There are many advantages of compilers which are constructed as phases of type�

preserving translations� Complete type information can be used for optimization
such as instantiating polymorphic equality to monomorphic equality and choosing
e�cient representation of data types� It is also useful to prove correctness of com�
pilation through such a method as logical relations ���� �� ��� ��� �
�� Furthermore�
constructing compilers as phases of type�preserving translations has a practical ad�
vantage for development of compilers as mentioned in �	�� ���� When we debug a
compiler itself� a code of an intermediate language can be type�checked� This has
greatly helped to �nd bugs in our compiler�

Type parameter passing is sometimes considered expensive� For example� Tol�
mach reported that the memory allocated for type parameters sometimes exceeded
the memory saved by tag�free garbage collection� Thus� it is desirable to consider
optimization of manipulation of type parameters� We propose the transformation
that eliminates runtime construction of type parameters� However� it is found that
the transformation cannot be formulated as a type�preserving translation in stan�
dard polymorphic ��calculi� Thus� we develop a more suitable calculus to express
manipulations of type parameters�
There have been many studies that considered passing some kind of type infor�

mation to implement various aspects of programming languages such as polymorphic
record operations and overloading ��
� 	�� 		�� For the theoretical basis of these ap�
proaches� various typed languages have been proposed� The calculus ��we propose in
this paper can be considered as an extension of the implementation calculus for com�
pilation of polymorphic records of Ohori �	�� 	�� and quali�ed types of Jones �	�� 		��
Runtime type parameters are distinguished from the usual types and new abstraction
and application for runtime type parameters are introduced� In our calculus� various

manipulations of types are more naturally expressed�
The next step is to develop the translation from the source language to the cal�

culus �� where type parameter passing is made explicit� There are many ways to
achieve this depending on what type information is to be passed to each polymorphic
function� The simplest choice is to pass the type information for type variables as Tol�
mach�s� This strategy gives complete type information and enables tag�free garbage
collection� However� if we only want the type information for some non�parametric
operations� only the type information for relevant type variables need to be passed�
Conversely� to avoid runtime construction of type parameters� more complicated type
information is passed to a type function� Thus� we formulate a deductive system that
non�deterministically chooses what type information is passed to each polymorphic

�



function� It is proved that this general translation preserves the type and operational
behaviour of a program� As a special case of the deductive system we propose a
translation called aggressive lifting� where the program obtained through the transla�
tion requires no runtime construction of type parameters� Furthermore� we formulate
deterministic deductive systems for Tolmach�s and aggressive lifting� These systems
naturally give rise to the algorithms of both types of lifting�
We propose another calculus �� which identi�es type parameters with values� It

is shown that ��has greater expressiveness on manipulations of type parameters and
is more suited to an actual intermediate language of compilers� Since type parameters
can be considered as values� they can be components of tuples� By using this facility�
closures can be implemented more e�ciently� Furthermore� optimization such as
uncurrying of type parameter and usual abstractions is more simply formulated than
in the previous calculus�
We have implemented an experimental compiler by using Kit compiler ��� as front

end� The compiler translates Core Standard ML programs to C� Non�parametric op�
erations such as polymorphic equality and tag�free garbage collection are implemented
by using runtime type parameters� As the intermediate language of the compiler� we
adopted the language based on calculus �� proposed in this paper� Our implementa�
tion of the compiler is such that Tolmach�s and aggressive type lifting can be chosen
at compile time� The e�ect of this choice is measured on the simple benchmarks like
polymorphic equality and standard benchmarks such as life and knuth�bendix� The
results for simple benchmarks show that aggressive type lifting is more than 	� �
faster at execution time than Tolmach�s� For standard benchmarks� the advantage
of aggressive lifting varies from the minimal to 	� � at execution time and 
� � at
heap allocation depending on benchmark programs�

Recently� there have been several attempts to utilize type information of ML
programs by passing type information� There are two compilers of ML that pass
type information at runtime� Tolmach�s compiler ���� and TIL ����� The intermediate
language of Tolmach�s compiler seems basically untyped� On the other hand� similarly
as our compiler TIL compiler is organized as phases of type�preserving translations�

However� TIL compiler does not consider optimizations of type parameter passing
and their typing problems� The intermediate language of the compiler is based on
the second order ��calculus and intensional type analysis�

�� Explicit Type Parameters

There are no explicit type abstractions and applications in ML� However� as pro�
posed in ���� ML programs can be translated to the language with explicit type ab�
stractions and applications like the second order ��calculus� Milner�s type inference
algorithm �nds a typing derivation for a well�typed program in the type system�
Based on the derivation� we can translate ML programs to the explicitly typed lan�






guage as described in ���� For example� the following program is translated into the
explicitly�typed program below�

let fun f x �

let fun g y � �x�y�

in

�g �� g true�

end

in

f �	 f �
��

end

let val f � �t
 �x
t

let val g � �s
 �y
s
 �x�y�

in

�g fintg �� g fboolg true�

end

in

f fintg �	 f frealg �
��

end

However� in order to preserve the operational behavior of a program we have to
restrict generalization of types in let for values� Such restriction was studied in ����
to avoid imperative types and reported to work well in practice�
Thus� as the source language of compilation of ML we consider the restricted

polymorphic ��calculus similar to the Core�XML ��� that captures typing properties
of Core Standard ML� The source language is de�ned as follows�

Monotypes � ��� b j t j � � �
Polytypes � ��� � j �t�� � � � � tn��
Expressions e ��� c j x j �x���e j e�e� j �t�� � � � � tn�e j ef��� � � � � �ng j p j

let x�� � e� in e�

We call this calculus �� � For the illustration of compilation of non�parametric op�
erations� the primitive p of type �t��p is included in this calculus� We assume that
primitive p requires some type information at runtime� We often write a sequence
of types as � � For example� we sometimes write a type application as ef�g� For
this calculus� we consider the standard type system and call�by�value operational
semantics�

�



As source programs of compilation� we consider only the type normalized expres�
sions �	�� that satisfy the following two conditions� Type abstractions occur only as
the bound expression of let�expressions� i�e�� let x�� � �t�� � � � � tn�e� in e�� Type
applications are only allowed for variables� i�e� xf��� � � � � �ng� The type normalized
expression corresponding to an expression can be obtained by some simple transfor�
mations without changing behaviour of the expression�

���� Tolmach�s Lifting Transformation

There are several possibilities on how type information can be passed in programs�
The simplest way is to treat each type variable as a variable for values and implement
type substitution as substitution for values� However� such implementation seems to
introduce a lot of cost�
Thus� Tolmach proposed passing several type parameters as one parameter that

he called a type environment and performing type substitution lazily� To pass type
parameters as one parameter� a program is transformed so that every type function
is closed with respect to type variables� In the above example� we have type function
g with free type variable t� �Although type variable t does not occur in function g� it
should be considered free because variable x of type t occurs in function g�� To make
g closed with respect to type variables� free type variable t is lifted and t is abstracted
with s in an uncurried abstraction as below�

let val g � �ts
�x
t
�y
s
 �x�y�

val f � �t
�x
t
�g ft�intg x �� g ft�boolg x true�

in

f fintg �	 f frealg �
��

end

We call this transformation Tolmach�s lifting� This transformation is always possible
in �� because all the application sites of a type function can be determined syntac�
tically in this language� Then type arguments for an uncurried type abstraction are
passed as one parameter� Thus� only one parameter is necessary for type information
in a type function after applying this transformation�

It should be remarked that variable x is also lifted in function g� because the
type of x is t that is lifted� Without such lifting� the transformation may result in
an ill�typed program� Thus� the transfromation depends on which variables should
be considered free in a type function� This information is usually determined during
closure conversion to avoid closures for known functions �	�� Thus� this lifting trans�
formation and closure conversion must be performed at the same time� That makes
the implementation of a compiler based on this transformation compilicated�
It is still expensive to construct a type environment every time a type function

is called� Thus� Tolmach used the method performing type substitution lazily� In

�



his implementation� almost all parts of a type enviornment are created statically and
each construction of type environment consumes only � words�

���� Aggressive Lifting and Typing Problems

In this subsection we consider optimized type parameter passing and show that
it is impossible to express such type parameter passing in standard polymorphic ��
calculi� The following example is taken from ����� At runtime of the program� the
type environment fs�sg for pair is created every time the function repair is called�

let pair � �t
�x
t
�x�x�
repair � �s
�y
s
 pair fs� sg �y�y�

in

repair fintg n

end

To overcome this ine�ciency� Tolmach suggested lifting the type parameter for the
function pair out of repair as below�

let pair � �t
�x
t
�x�x�
repair � �s
�t
�y
s
 pair ftg �y�y�

in

repair fintg fint�intg n

end

Now that the type paramter fint�intg is closed� that can be constructed statically
and there are no need of runtime construction of types� If a calling site of repair is in
another type function� the lifted type argument may be still open� Thus� in order to
eliminate runtime construction of type parameters we must apply this transformation
from the inner�most type functions repeatedly� Thus� if there are nested calls to type
fucntions� the number of type arguments may increase exponentially�
Furthermore� this program is not well�typed in the second order ��calculus because

t is not equal to s� s in the function repair� One solution of this problem is to use
translucent types �or manifest types� proposed for modules of Standard ML �
� 	��
and recently used to solve the typing problem of closure conversion of the second
order ��calculus in �	��� For the program above� we can add the constraint t � s� s
at abstraction of t in repair and such modi�cation makes the program well�typed
in the extended calculus� However� this solution is not satisfactory when we consider
other kinds of manipluation of types as we see below�
In order to avoid the increase of the number of type parameters� the transformation

is modi�ed so that two type absractions are uncurried as below�

�



let pair � �t
�x
t
�x�x�
repair � �s
�y
���s�
 pair f���s�g
�y�y�

in

repair fhint�int�intig n

end

where uncurrying is made explicit by using type abstraction that takes a pair of
types h��� ��i instead of uncurried form of type abstraction �t�� t��e� We call this
transformation aggressive lifting in this paper� In this transformation� the number
of the type arguments does not increase and the runtime construction of types are
replaced by projections of type parameters� However� even if we use translucent
types for this transformation� it is impossible to make this program well�typed� The
constraint that the type argument s of repair must hold is ���s� � ���s� � ���s�

and we cannot express this constraint by translucent types� So� we propose a calculus
more suitable to express manupulations of type parameters in the next section�

�� A Calculus for Explicit Type Passing

In this section� we propose the explicitly typed calculus that is suitable to express
wide range of manipulations of type parameters and thus the base of the interme�
diate language of compilers of ML� There have been many studies that proposed
passing some kind of type information to implement various aspects of programming
languages such as polymorphic record operations and overloading ��
� 	�� 		�� For
the theoretical basis of these approaches� various calculi have been proposed� The
calculus we propose can be considered as an extension of the implementation calcu�
lus for compilation of polymorphic records of Ohori �	�� 	�� and quali�ed types of
Jones �	�� 		�� We mainly use terminology of quali�ed types in this section� The
language of our calculus is de�ned as follows�

Monotypes � ��� b j t j � � � j � � �
Predicates � ��� � j h��� � � � � �ni
Polytypes � ��� � j �t�� � � � � tn��
Evidences � ��� b j u j � � � j �i��� j h��� � � � � �ni
Expressions e ��� c j x j �x���e j e�e� j �t�� � � � � tn�e j ef��� � � � � �ng j

�u���e j e��� j p j let x�� � e� in e�

Compared to �� � the language is extended by predicates and evidences� Evidences
are corresponding to runtime type parameters for our purpose and are classi�ed by
predicates� Monotypes are extended by type � � � which is the type for the function
that takes a type parameter classi�ed by �� Evidences �or runtime type parameters�
have the de�nition similar to that of monotypes to express corresponding type in�
formation� However� a type variable is replaced by an evidence variable u and it is
extended by tuple h��� � � � � �ni and projection �i���� which are used to pass multiple






�base� ��� �� b�b �var�
u�� � �
��� �� u��

�arrow�
��� �� ����� ��� �� �����
��� �� �� � ����� � ��

�tuple�
��� �� �i��i �	 � i � n�

�� � �� h��� � � � � �ni�h��� � � � � �ni
�proj�

�� � �� ��h��� � � � � �ni
��� �� �i�����i

Figure 	� Rules for Evidences

types as one parameter� The abstraction �u���e represents the function which takes
type information corresponding to �� The runtime type information � is given to an
evidence abstraction by evidence application e���� We call this calculus �� � where
� is evidence abstraction and � is the type of evidence abstraction�
Now we will give the type system for the calculus� First� we need the following

three kinds of contexts�

Type contexts � ��� t�� � � � � tn
Predicate assignments � ��� u����� � � � � un��n
Type assignments � ��� x����� � � � � xn��n

We extend the usage of type contexts to general sequence of type variables� For
example� we sometimes write polytypes and type abstractions as ���� and ���e�
There are two kinds of judgments as follows�

�� � �� ��� evidence � satis�es predicate �
���� � � e�� expression e has type �

where we assume that all free type variables in � and � are included in �� The rules
for judgment ��� �� ��� are shown in Figure 	� Intuitively� ��u����� � � � � un��n �� ���
means that evidence � is the type information corresponding to predicate � if we
assume each ui is the type information corresponding to predicate �i� According
to our speci�c purpose� these rules are simpli�ed compared to the rules of quali�ed
types� However� they are extended for tuples and projections of evidences�
The typing rules for the calculus are similar to the rules of quali�ed types and are

shown in Figure �� Only the rules for type abstraction and application� and evidence
abstraction and application are shown� Other rules are standard� For primitive p of
type �t��p in �� � we assume that the corresponding primitive p in �� requires the
evidence �or type parameter� which satis�es predicate �p and thus has type �t��p � �p
in �� �
For this calculus� we consider the standard call�by�value operational semantics�

�



���� u��� � � e � �
���� � � �u���e � � � �

���� � � e � � � � ��� �� � � �
���� � � e��� � �

����� �� � � e � �
���� � � ����e � �����

���� � � e � �t�� � � � � tn��
���� � � ef��� � � � � �ng � � ���� � � � � �n	t�� � � � � tn�

�� �� � � p � �t��p � �p

Figure �� Typing Rules

��u���e���� is reduced to e��	u��

���� Representing Type Passing in ��

In this subsection� we consider how various ways of type lifting we have considered
can be represented in this calculus without causing typing problems� The formal
account of the translation from the source language �� to the calculus �� is given in
Section ��
The following program is the translation of the �rst example corresponding to

Tolmach�s lifting�

let val f � �t
�u
hti
�x
t

let val g � �s
�u
ht� si
�y
s
 �x�y�

in

�g fintg �ht� inti� �� g fboolg �ht� booli� true�

end

in

f fintg �hinti� �	 f frealg �hreali� �
��

end

For the function f and g� the evidence abstractions are added after the type abstrac�
tions� The evidence parameter u for g takes an evidence corresponding type variables
t and s� Thus� all the necessary type information can be obtained from one parameter
u in the function g� It can be easily checked that this program is well�typed in �� �
Furthermore� as the example shows� we do not have to lift type and value abstrac�

tions� Thus we can separate the lifting transformation from closure conversion and
the design of compilers can be simpli�ed� Furthermore� this representation is more
closely re�ecting Tolmach�s implementation since it is explicitly expressed that all
runtime type arguments to a type function are passed as one argument�

�



Furthermore� we can express various manipulations of type parameters without
causing the typing problems we described in Section ���� In the following example�
the type parameter for the function pair is lifted from the function repair as type
parameter u��

let pair � �t
�u
hti
�x
t
�x�x�
repair � �s
�u�
hsi
�u�
hs� si
�y
s
 pair fs� sg �u�� �y�y�

in

repair fintg �hinti� �hint� inti� �

end

The function pair has type �t�hti � t � t� t and pair fs� sg has type hs� si �
�s � s� � �s � s� � �s � s�� Since u� satis�es predicate hs � si and �y�y� has type
s� s� pair fs� sg �u�� �y�y� is well�typed�
In the same way� uncurrying of type parameters can be done while preserving

well�typedness of the program as the following� The type parameter consiting of s
and hs � si is passed as one parameter to repair and its second component is used
as the type parameter to the funciton pair�

let pair � �t
�u
hti
�x
t
�x�x�
repair � �s
�u
hs� hs� sii
�y
s
 pair fs� sg ����u�� �y�y�

in

repair fintg �hint� hint� intii� �

end

�� Type Lifting Translation

In this section� we will give the translation from source calculus �� to calculus
�� � First� we consider a general translation that is non�deterministic and involves
not only Tolmach�s lifting but also aggressive lifting� The translation is given as
���� � � e� e� where �� �� and � are a type context� a predicate assignment� and a
type assignment of �� respectively� The closed expressions are translated under the
empty contexts�
The rules for the translation are shown in Figure 
� In rule �let�� the body of

the type abstraction� e�� is translated by assuming that type information is passed
by fresh evidence variable u� This variable u is assumed to hold the evidence that
satis�es predicate �� However� no condition is given for the predicate � in this rule�
That makes the translation non�deterministic and gives the ability to express various
ways of lifting� As we see later� several restrictions are imposed in this rule depending
on the strategies of lifting� After the translation of e�� e� is translated by assuming
that x takes an evidence that satis�es predicate ��
A type application is translated into the combination of type and evidence appli�

cations by rule �tapp�� The applied type parameter is determined from the type

	�



�let�
����� �� u��� � � e� � e�� ���� �� x���

��� � � � e� � e��
���� � � let x������ � ����e� in e� � let x������ � � � �����u���e�� in e��

�tapp� �prim�
��� �� � � ����	�

��
�� �� �� x������� � �� � xf�g� xf�g���

�� � �� � � �p��	t�
�� �� � � pf�g� pf�g���

Figure 
� Translation from �� to ��

assignment of the variable� If the variable with type �t�� � � � � tn��� � �� is ap�
plied to the type ��� � � � � �n then it requires the type parameter corresponding to

������ � � � � �n	t�� � � � � tn�� So the evidence � that satis�es ������ � � � � �n	t�� � � � � tn� un�
der � is applied� For primitive p� pf�g is applied to the evidence � which satis�es
�p��	t��
For this deductive system� we proved that the translation preserves the type and

operational behaviour of a program� Operational correctness is proved by the method
of logical relations�

���� Tolmach�s Lifting

Tolmach�s lifting is formulated by restricting the rule �let� as follows�

����� �� u�h����i� � � e� � e�� ���� �� x�����h����i � � � e� � e��
���� � � let x������ � ����e� in e�

� let x�����h����i � � � �����u�h����i�e�� in e��

where the predicate � is restricted to ����� This choice of predicate ���� for u is
always enough to translate e�� By this restriction the translation is almost determin�
istic� However� the deduction of �� is still non�deterministic and may give redundant
translation such as �� ���hbi� � b� Thus� Tolmach�s algorithm is obtained by restricting
the �var� and �proj� rules as follows�

�� �� u�ht�� � � � � tni �� �i�u��ti�

���� Aggressive Lifting

In order to avoid runtime construction of types� we restrict evidence � as follows�

� ��� �� j u j �i���

		



where �� is a closed evidence that does not contain projection �i� A translation ob�
tained with this restriction does not have to construct type parameters at runtime�
since there is no evidence variable within h� � �i and �� However� the restricted de�
ductive system does not provide the algorithm for the translation because it is not
known at the translation of let what open evidences are necessary to translate e� and
thus what predicate � should be used for translation of e�� Thus� we will de�ne the
deterministic version of the deductive system that provides a translation algorithm�
The deterministic version of the deductive system is obtained by collecting nec�

essary types during translation� The relation has the following form� ��u� � �
e� h��� � � � � �mi � e�� h��� � � � � �m� � � � � �m�ki � where u is the current evidence vari�
able for obtaining type information� The predicates which u must satisfy are created
during the translation of e� First we assume that u must hold the evidences for
��� � � � � �m� Then� the predicates necessary to translate e� �m�� � � � �m�k� are ap�
pended to the list� The rules of the translation are given below�

���	��� is open�
�� u� �� x������ � �� � xf�g� h��� � � � � �ni� xf�g��n���u��� h��� � � � � �n� ���	�

��i

���	��� is closed� 	� 	 �� � � ���	���
�� �� �� x � ����� � �� � xf�g��� xf�g�����

����� u� � � e�� h����i� e����� �� u�� �� x������� � � � e���
�
� e����

��

�� u�� � � let x������ � ����e� in e���
�

� let x������ � � � �����u���e�� in e����
��

In case of the �rst rule� since predicate ���	� �� is open� if we create the evidence
here� the runtime construction of the evidence is necessary� Instead� we add predicate
���	��� to the list of the predicates and apply xf�g to the projection of current
evidence variable u� However� since in the second rule ���	� �� is closed the evidence
to corresponding to it can be created statically� In the rule for let� expression e�
is translated with h����i� That guarantees that the type information for every free
type variable can be obtained from u and tag�free garbage collection can be performed
by using type information obtained from u�
The following lemma ensures that there is a deduction in the original system

corresponding to a deduction of the algorithmic version of the deductive system�

Lemma � If �� u� � � e��� e����� then ��u���� � � e� e��

Polytype ����� � � in �� is called a translation of ����� under � if FTV ��� 

� ���� This relation is naturally extended to type assignments�

Lemma � Let �� be a translation of � under �� If ��� � e � ��� then for all � there

exist e� and �� such that ��u� �� � e��� e�����

	�



It is clear from this lemma that for 	� 	 � e � � there exists a deduction of 	�u� 	 �
e� hi � e�� hi� This ensures the existence of a translation for an arbitrary well�typed
closed program�

�� Identifying Evidences with Values

In this section� we propose a calculus which is more expressive for manipulation of
evidences and is more suitable for an intermediate language of a compiler� In calculus
�� � there are three kinds of abstractions and applications for types� evidences� and
values� Abstractions and applications for types are completely ignored at runtime�
though enable type checking of programs� However� the latter two are implemented in
the similar way� Thus� by identifying the latter two we obtain the following calculus�

Monotypes � ��� b j t j � � � j T ��� j h�� � � � �� �ni
Predicate � ��� � j h��� � � � � �ni
Polytypes � ��� � j ����
Evidence � ��� b j E�e� j � � � j �i��� j h��� � � � � �ni
Expressions e ��� c j x j �x���e j e�e� j ���e j ef��� � � � � �ng j p j

R��� j he�� � � � � eni j �i�e� j let x�� � e� in e�

where T ��� is the type for the evidences satisfying predicate �� E�e� coerces ex�
pressions to evidences� and R��� coerces evidences to expressions� Since evidences
are abstracted by usual � we call this calculus �� � In order to illustrate advan�
tages of �� over the previous calculus� the tuple of expressions he�� � � � � eni and its
type h�� � � � � � �ni are included in the calculus� As the evidences may contain free
variables the judgments of the calculus has the following forms�

�� � �� � � � evidence � satis�es predicate �
��� � e � � expression e has type �

The rules to identify evidences with values are de�ned as follows�

�� � � e � T ���
�� � �� E�e� � �

��� �� � � �
��� � R��� � T ���

Other rules are analogous to those of �� �
This calculus is more expressive in manipulation of evidences �or type parameters��

For example� since type parameters can now be considered as values they can be
components of tuples� Furthermore� it is possible to express a function that returns
a type parameter as bellow�

�x�T �t��R�E�x�� E�x�� � T �t�� T �t � t�

This function takes the evidence corresponding to type t and returns the evidence
corresponding to t � t� Optimization such as uncurrying abstractions for a type

	




parameter and a value is formulated more simply than in the previous calculus� Thus�
we think that this calculus is more suitable for an intermediate language of a compiler�
Now we consider the representation of closures in both calculi� Since evidences

are distinguished from usual values in �� � an evidence cannot be a component of
a usual record� Thus� the evidence and value environments of a closure cannot be
merged into a single environment� For example� the closure of �x�t�y for y � 	 and
t � int is represented in �� as follows�

h��t��u�t��y�t��x�t�y�fintg� int� 	i

In order to keep uniform representation for closures we cannot eliminate the evidence
abstraction in the code and evidence component of a closure even if there are no free
evidence variables� Thus the closure of �x�int�x y for y � 	 is represented as follows�

h�u�h i��y�int��x�int�x y� h i� 	i

where the evidence environment is empty h i� Furthermore� we need a special con�
structor for closures since it has an evidence as a component�
However� in ��an evidence can be a component of a record of expressions� Hence�

the evidence and value environments can be merged into a single environment� The
closures of �x�t�y and �x�int�x y are represented as follows�

h��t��z�hT �t�� ti��x�t����z��fintg� hR�int�� 	ii

h�y�int��x�int�x y� 	i

As we see in the example above� this representation saves space for empty evidence
environments in closures�
Even if we use �� � we need a special constructor for closures to hide the type

of the environment of a closure� However� as described in �	��� we can represent a
closure of �� by a standard tuple and a package expression of existential types� A
closure of type �� � �� can be represented as a value of type �t��t � �� � ��� � t
where t is the type of the environment�

�� Implementation

An experimental compiler is implemented as a translator from Core SML to C by
using Kit Compiler as front end� An executable program produced by the compiler
uses type parameters for tag�free garbage collection and non�parametric operations
such as polymorphic equality�
The compiler is organized as in Figure �� The Kit Compiler translates Core SML

to the explicitly typed intermediate language Lambda that is similar to �� � We have
designed another intermediate language called IL� It is based on calculus ��proposed

	�



Core SML

 Kit Compiler

Lambda

 A�normalize
IL

 Optimization
IL

 Type lifting
IL

 Record �attening� Uncurrying
IL

 Closure conversion
IL

 Translation to C
C

Figure �� The organization of the compiler

in this paper and on A�normal forms ��� ���� Since �� can be considered as a subset of
�� � IL is used not only after type lifting but before type lifting� Then� all the stages
except the last translation to C are implemented as type�preserving translations�
The type�checker for IL is implemented so that the intermediate code produced

by each translation can be type�checked during debugging of the compiler� Type�
checking of intermediate code has greatly helped development of our compiler�
We implemented the type lifting translation so that Tolmach�s and aggressive

lifting can be chosen when we compile a program� Evidences �or runtime type pa�
rameters� are implemented by the data structures similar to Tolmach�s� For aggressive
lifting� the representation of evidences is simpli�ed because only projections of evi�

dences are necessary at runtime� Type parameters are passed to functions as usual
C arguments�
Uncurrying optimization is performed after type lifting to eliminate the abstrac�

tions and applications introduced by type lifting if possible� Closures are represented
by a special constructor as the abstract closures described in �	��� However� closures
do not consists of code� type environment� and value environment but just code and
environment as described in Section ��
The polymorphic equality function of SML is implemented as C function which

uses runtime type information� In Tolmach�s representation� the function must per�
form computation corresponding to reductions of projections of evidences� However�
for aggressive lifting the type arguments to the polymorphic equality function are
also lifted and then such reductions are not necessary at all� That simpli�es the im�
plementation of polymorphic equality in aggressive lifting and makes the use of type

	�



information in aggressive lifting cheaper than in Tolmach�s as described in the next
section�

	� Measurements

We measured the cost of passing and using type parameters in aggressive and
Tolmach�s lifting� In general� when a type parameter corresponding to an open type
is passed� Tolmach�s lifting constructs a new type environment and allocates � words
and aggressive lifting has to perform a projection on a type parameter� We �rst
compared the cost of these operations�
Function repair in Section ��� allocates � words for usual pairs� Thus� if we

compile this program by instantiating pair and repair to monomorphic functions�
this program consumes � words for usual data structures for pairs� This is same for
aggressive lifting� However� Tolmach�s lifting allocates � words for type parameters
and thus allocates 	�� times memory in the whole� An even worse situation for
Tolmach�s lifting is the following program�

let proj � �t�t�
�x
t� � t�
���x�
pair�proj � �s
�y
s
 proj fs�sg �y�y�

in

pair�proj fintg n

end

Record �attening optimization of our compiler converts the function proj from the
function that takes a pair into the function with two arguments� So if we compile
this program by instantiating proj and pair�proj to monomorphic functions or
aggressive lifting� this program allocates no words� However� the executable program
compiled by Tolmach�s lifting allocates � words for each call of pair�proj� So� even
if we considered heap allocation of programs asymptotically� the program compiled
by Tolmach�s lifting may show unexpected behaviour�
Execution time of these programs are shown in Figure �� The column Mono shows

the results when the programs are compiled by instantiating polymorphic functions
to monomorphic functions� The numbers in the parentheses are the ratio to the cases
of aggressive lifting� It shows that aggressive lifting is more than 	� � faster than
Tolmach�s� If we compare aggressive lifting to the monomorphic cases� we cannot see
any signi�cant di�erence in performance�
In order to measure the cost using type information� we measured the execution

time of programs using the polymorphic equality function� In Tolmach�s representa�
tion� the computation corresponding normalizing type parameters must be performed

because of lazy reduction of types� The test programs polyeq� and polyeq� repeat�
edly applies polymorphic equality to integers� polyeq�pair to pairs of integers� Be�
fore calling polymorphic equality� there are one nested call of polymorphic function

	�



Aggressive Tolmach Mono
repair 	���� 	��

 �	�	�� 	��
� �	����
pair�proj ��
	 
�
� �	���� ��
� �	����
polyeq� ���
 ���
 �	���� �
polyeq� ���
 	���	 �	�
�� �
polyeq�pair 	���
 �	��� �	�
�� �

Figure �� Basic benchmarks� execution time excluding garbage collection time �sec�

in polyeq� and two netsted calls in polyeq� and polyeq�pair� The results are also
shown in Figure �� In both cases aggressive lifting is faster than Tolmach�s� In case
of aggressive lifting� the type argument to the polymorphic equality is identical for
polyeq� and polyeq� and their execution time are almost the same� On the other
hand� if compiled by Tolmach�s lifting� there are one more nesting of type environ�
ment in case of polyeq� and the di�erence in Tolmach�s and our representation in
polyeq� is bigger than that of polyeq�� However� since checking equality is much
expensive for polyeq�pair� the relative di�erence of the two is smaller�
We measured the allocation and execution time of standard benchmarks for both

aggressive and Tolmach�s lifting� The rusults are shown in Figure �� The results
for SML!NJ ���
 are also shown to show the excutable programs are fast enough to
consider the e�ect of the strategies of type lifting�a

The excutable programs compiled by aggressive lifting are always faster than those
by Tolmach�s except for mandelbrot� which is compiled to a completely monomporhic
program� The biggest di�erence about 	� � in execution time is seen for life� As
reported in ��	�� life spends almost all the execution time for polymorphic equality�
�We did not implement minimal typing �
��� Thus� the di�erence comes from the
time spent for polymorphic equality� This seems also true for boyer since there is no
di�erence in allocation�
As for allocation the di�erences between Tolmach�s and aggressive lifting are min�

imal except for simple� For simple� the executable program compiled by Tolmach�s
lifting allocates 
� � more memory� This seems to happen because most polymorphic
functions are inlined in the other programs� Thus� much bigger di�erence might be
seen when we consider separate compilation�


� Conclusion

We have proposed several calculi for explicit type passing that enable us to for�
malize compilation of polymorphic programming languages like ML as phases of type

aIt is not fair to compare allocation of excutable programs of our compiler to that of SML�NJ
because ours uses stack for frames of functions� but SML�NJ uses heap�

	




Aggressive Tolmach�s SML!NJ ���

Time Allocation Time Allocation Time Allocation

life 
�
� 
�
� ���� �	�	�� 
��� �	��
� 	���� 
���

knuth�bendix ���
 	��
� ���� �	���� 	���	 �	���� 		�
� �����
simple �	�
� ����
 ���
	 �	���� �
��	 �	�
�� 
	��� 	�
���
boyer ���� 
��� ���� �	���� 
��� �	���� 	�
� ����
mandelbrot 
��
 ���� 
��� �	���� ���� �	���� 	���� �����

Figure �� Results for standard benchmarks� time is the execution time �sec� excluding
garbage collection time and allocation is in M words�

preserving translations� Furthermore� we have formulated a translation from the
source language to the proposed calculus as a non�deterministic deductive system
and proved its correctness� The translation algorithm that avoids runtime construc�
tion of type parameters has been given as a special case of the deductive system�
Based on the calculus� we have designed an intermediate language and imple�

mented a compiler of Core Standard ML� The results for simple benchmarks show
programs compiled by aggressive type lifting are more than 	� � faster at execution
time than those compiled by Tolmach�s� For standard benchmarks� the advantage is
much smaller in general� This seems to happen because most polymorphic functions
are inlined� Thus� we would like to extend our compiler to separate compilation and
study various strategies of type passing in presence of separate compilation�

Acknowledgements

Some of the ideas presented in this paper were developed while the author was
visiting Carnegie Mellon University� We would like to thank Robert Harper and Greg
Morrisett for many interesting discussions on the subject of this paper� Irek Ulidowski
and the anonymous referees provided helpful comments to improve this paper�

References

�	� Andrew W� Appel� Compiling with Continuation� Cambridge University Press�
	����

��� Lars Birkedal� Nick Rothwell� Madds Tofte� and David N� Turner� The ML Kit

Version �� 	��
�

�
� Nikolaj Skallerud Bjorner� Minimal typing derivations� In ACM SIGPLAN

Workshop on ML and its Application� 	����

	�



��� Ctherine Dubois and Pierre Weis� Generic polymorphism� In Proc� ACM Symp�

on Principles of Prog� Languages� 	����

��� Cormac Flanagan� Amr Sabry� Bruce F� Duba� and Matthias Felleisen� The
essence of compiling with continuations� In Proc� ACM SIGPLAN Conf� on

Programming Language Design and Implementation� 	��
�

��� H� Friedman� Equality between functionals� In R� Parikh� editor� Logic Collo	

quium �
�� North�Holland� 	�
��

�
� Robert Harper and Mark Lillibridge� A type�theoretic approach to higher�order
modules� In Proc� ACM Symp� on Principles of Prog� Languages� pages 	�
"	

�
	����

��� Robert Harper and John C� Mitchell� On the type structure of standard ML�
ACM Transaction on Programming Languages and Systems� 	����� 	��
�

��� Robert Harper and Greg Morrisett� Compiling polymorphism using intensional
type analysis� In Proc� ACM Symp� on Principles of Prog� Languages� pages
	
�"	�	� 	����

�	�� Fritz Henglein and Jesper Jorgensen� Formally optimal boxing� In Proc� ACM

Symp� on Principles of Prog� Languages� 	����

�		� Mark P� Jones� A theory of quali�ed types� In ESOP ���
 European Symposium

on Programming� LNCS ���� 	����

�	�� Mark P� Jones� ML typing� explicit polymorphism and quali�ed types� In TACS
���
 Conference on theoretical aspects of computer software� LNCS 
��� 	����

�	
� Xavier Leroy� Unboxed objects and polymorphic typing� In Proc� ACM Symp�

on Principles of Prog� Languages� 	����

�	�� Xavier Leroy� Manifest types� modules� and separate compilation� In Proc� ACM
Symp� on Principles of Prog� Languages� pages 	��"	��� 	����

�	�� Robin Milner� Mads Tafte� and Robert Harper� The De�nition of Standard ML�
MIT Press� 	����

�	�� Yasuhiko Minamide� Greg Morrisett� and Robert Harper� Typed closure conver�
sion� In Proc� ACM Symp� on Principles of Prog� Languages� 	����

�	
� R� Morrison� A� Dearle� R�C�H� Connor� and A� L� Brown� An ad hoc approach
to the implementation of polymorphism� ACM Transaction on Programming

Languages and Systems� 	
�
�� 	��	�

	�



�	�� Atsuhi Ohori� A compilation method for ML�style polymorphic record calculi�
In Proc� ACM Symp� on Principles of Prog� Languages� 	����

�	�� Atsushi Ohori� A polymorphic record calculus and its compilation� ACM Trans	

action on Programming Languages and Systems� 	
���� 	����

���� Gordon D� Plotkin� Lambda�de�nability in the full type hierarchy� In To

H�B�Curry
 Essays on Combinatory Logic� Lambda Calculus and Formalism�
Academic Press� 	����

��	� Zhong Shao and Andrew W� Appel� A type�based compiler for Standard ML� In
Proc� ACM SIGPLAN Conf� on Programming Language Design and Implemen	

tation� 	����

���� R� Statman� Completeness� invariance� and lambda�de�nability� Journal of Sym	
bolic Logic� �
�	
"��� 	����

��
� R� Statman� Logical relations and the typed ��calculus� Information and Control�
��� 	����

���� W� W� Tait� Intensional interpretation of functionals of �nite type� Journal of
Symbolic Logic� 
����� 	��
�

���� D� Tarditi� G� Morrisett� P� Cheng� C� Stone� R� Harper� and P Lee� TIL� A
type�directed optimizing compiler for ML� In Proc� ACM SIGPLAN Conf� on

Programming Language Design and Implementation� 	����

���� Andrew Tolmach� Tag�free garbage collection using explicit type parameters� In
Proc� ACM Conf� Lisp and Functional Programming� pages 	"		� 	����

��
� Philip Wadler and Stephen Blott� How to make ad�hoc polymorphism less ad
hoc� In Proc� ACM Symp� on Principles of Prog� Languages� 	����

���� Andrew K� Wright� Polymorphism for imperative languages without imperative
types� Technical report� Rice University� 	��
� TR�
�����

��


