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ABSTRACT

We propose several calculi for explicit type passing that enable us to formalize
compilation of polymorphic programming languages like ML as phases of type-
preserving translations. In our calculi various manipulations for type parameters
can be expressed without typing problems—this is impossible in the polymorphic
A-calculi. Furthermore, we develop the translation from an explicit typed source
calculus similar to Core-XML to one of the proposed calculi which completely
eliminates runtime construction type parameters. We propose an intermediate
language based on this calculus, and discuss an implementation of a compiler
for Core Standard ML.

1. Introduction

One of the advantages of typed programming languages is that type information
can be productively used to obtain efficient executable programs. However, in the
presence of polymorphism, a type in a program may contain type variables and cannot
be determined as a ground type at compile time. This has been one of the main diffi-
culties in developing implementations of ML, which effectively utilize type information
obtained from type inference. In order to overcome this problem two approaches to
utilizing type information for compilation have been proposed recently.

The first approach is representation analysis proposed by Leroy [13], which is based
on coercions between monomorphic and polymorphic types. Although the polymor-
phic parts of a program must use uniform representation, the monomorphic parts can
be compiled efficiently by using type information. It was reported that the compilers
based on this approach improved the performance of executable programs [13, 21].

More aggressive approach is to use type information by passing types as actual
parameters [17, 9, 4, 26, 25] as in the second order A-calculus. The advantage of
this approach is that even for a polymorphic type the actual type is known as an
instance at runtime and can be used for several purposes. For example, Tolmach
implemented tag-free garbage collection by passing type parameters [26]. Harper and
Morrisett proposed a general mechanism for using types at runtime called intensional
type analysis [9]. In Tolmach’s implementation it is shown that explicit type passing
is not so expensive as one might think.

In this paper, we propose several calculi for explicit type passing that enable us
to formalize compilation of polymorphic programming languages like ML as phases
of type-preserving translations. In our calculi, various manipulations for type pa-
rameters can be expressed without typing problems, which is impossible in standard



polymorphic A-calculi. Furthermore, we propose the translation from a source calcu-
lus similar to Core-XML to one of the proposed calculi which completely eliminates
runtime construction of type parameters. Based on the calculus, we propose an in-
termediate language and discuss an implementation of an experimental compiler for
Core Standard ML [15].

There are many advantages of compilers which are constructed as phases of type-
preserving translations. Complete type information can be used for optimization
such as instantiating polymorphic equality to monomorphic equality and choosing
efficient representation of data types. It is also useful to prove correctness of com-
pilation through such a method as logical relations [24, 6, 20, 22, 23|. Furthermore,
constructing compilers as phases of type-preserving translations has a practical ad-
vantage for development of compilers as mentioned in [16, 25]. When we debug a
compiler itself, a code of an intermediate language can be type-checked. This has
greatly helped to find bugs in our compiler.

Type parameter passing is sometimes considered expensive. For example, Tol-
mach reported that the memory allocated for type parameters sometimes exceeded
the memory saved by tag-free garbage collection. Thus, it is desirable to consider
optimization of manipulation of type parameters. We propose the transformation
that eliminates runtime construction of type parameters. However, it is found that
the transformation cannot be formulated as a type-preserving translation in stan-
dard polymorphic A-calculi. Thus, we develop a more suitable calculus to express
manipulations of type parameters.

There have been many studies that considered passing some kind of type infor-
mation to implement various aspects of programming languages such as polymorphic
record operations and overloading [27, 18, 11]. For the theoretical basis of these ap-
proaches, various typed languages have been proposed. The calculus A~ we propose in
this paper can be considered as an extension of the implementation calculus for com-
pilation of polymorphic records of Ohori [18, 19] and qualified types of Jones [12, 11].
Runtime type parameters are distinguished from the usual types and new abstraction
and application for runtime type parameters are introduced. In our calculus, various
manipulations of types are more naturally expressed.

The next step is to develop the translation from the source language to the cal-
culus A= where type parameter passing is made explicit. There are many ways to
achieve this depending on what type information is to be passed to each polymorphic
function. The simplest choice is to pass the type information for type variables as Tol-
mach’s. This strategy gives complete type information and enables tag-free garbage
collection. However, if we only want the type information for some non-parametric
operations, only the type information for relevant type variables need to be passed.
Conversely, to avoid runtime construction of type parameters, more complicated type
information is passed to a type function. Thus, we formulate a deductive system that
non-deterministically chooses what type information is passed to each polymorphic



function. It is proved that this general translation preserves the type and operational
behaviour of a program. As a special case of the deductive system we propose a
translation called aggressive lifting, where the program obtained through the transla-
tion requires no runtime construction of type parameters. Furthermore, we formulate
deterministic deductive systems for Tolmach’s and aggressive lifting. These systems
naturally give rise to the algorithms of both types of lifting.

We propose another calculus A= which identifies type parameters with values. It
is shown that A= has greater expressiveness on manipulations of type parameters and
is more suited to an actual intermediate language of compilers. Since type parameters
can be considered as values, they can be components of tuples. By using this facility,
closures can be implemented more efficiently. Furthermore, optimization such as
uncurrying of type parameter and usual abstractions is more simply formulated than
in the previous calculus.

We have implemented an experimental compiler by using Kit compiler [2] as front
end. The compiler translates Core Standard ML programs to C. Non-parametric op-
erations such as polymorphic equality and tag-free garbage collection are implemented
by using runtime type parameters. As the intermediate language of the compiler, we
adopted the language based on calculus A~ proposed in this paper. Our implementa-
tion of the compiler is such that Tolmach’s and aggressive type lifting can be chosen
at compile time. The effect of this choice is measured on the simple benchmarks like
polymorphic equality and standard benchmarks such as 1ife and knuth-bendix. The
results for simple benchmarks show that aggressive type lifting is more than 15 %
faster at execution time than Tolmach’s. For standard benchmarks, the advantage
of aggressive lifting varies from the minimal to 10 % at execution time and 35 % at
heap allocation depending on benchmark programs.

Recently, there have been several attempts to utilize type information of ML
programs by passing type information. There are two compilers of ML that pass
type information at runtime: Tolmach’s compiler [26] and TIL [25]. The intermediate
language of Tolmach’s compiler seems basically untyped. On the other hand, similarly
as our compiler TIL compiler is organized as phases of type-preserving translations.
However, TIL compiler does not consider optimizations of type parameter passing
and their typing problems. The intermediate language of the compiler is based on
the second order A-calculus and intensional type analysis.

2. Explicit Type Parameters

There are no explicit type abstractions and applications in ML. However, as pro-
posed in [8], ML programs can be translated to the language with explicit type ab-
stractions and applications like the second order A-calculus. Milner’s type inference
algorithm finds a typing derivation for a well-typed program in the type system.
Based on the derivation, we can translate ML programs to the explicitly typed lan-



guage as described in [8]. For example, the following program is translated into the
explicitly-typed program below.

let fun f x =
let fun g y = (x,y)
in
(g 2, g true)
end
in
f 3; £ 3.14
end

let val f = At. Ax:t.
let val g = As. Ay:s. (x,y)

in
(g {int} 2, g {bool} true)
end
in
f {int} 3; f {real} 3.14
end

However, in order to preserve the operational behavior of a program we have to
restrict generalization of types in let for values. Such restriction was studied in [28§]
to avoid imperative types and reported to work well in practice.

Thus, as the source language of compilation of ML we consider the restricted
polymorphic A-calculus similar to the Core-XML [8] that captures typing properties
of Core Standard ML. The source language is defined as follows:

Monotypes 7 == b |t | T—T
Polytypes o == 1 | Vi1,... ty.T
Ezpressions e == c¢ | x | Ax:Te | ejea | Aty,... the | ef{m,...;m} | p |

let x:0 = €1 in ey

We call this calculus A7 . For the illustration of compilation of non-parametric op-
erations, the primitive p of type V¢.7, is included in this calculus. We assume that
primitive p requires some type information at runtime. We often write a sequence
of types as 7. For example, we sometimes write a type application as e{7}. For
this calculus, we consider the standard type system and call-by-value operational
semantics.



As source programs of compilation, we consider only the type normalized expres-
sions [10] that satisfy the following two conditions. Type abstractions occur only as
the bound expression of let-expressions; i.e., let z:0 = Atq,...,t,.e; in ey. Type
applications are only allowed for variables; i.e, 2{7y,...,7,}. The type normalized
expression corresponding to an expression can be obtained by some simple transfor-
mations without changing behaviour of the expression.

2.1. Tolmach’s Lifting Transformation

There are several possibilities on how type information can be passed in programs.
The simplest way is to treat each type variable as a variable for values and implement
type substitution as substitution for values. However, such implementation seems to
introduce a lot of cost.

Thus, Tolmach proposed passing several type parameters as one parameter that
he called a type environment and performing type substitution lazily. To pass type
parameters as one parameter, a program is transformed so that every type function
is closed with respect to type variables. In the above example, we have type function
g with free type variable ¢. (Although type variable ¢ does not occur in function g, it
should be considered free because variable x of type ¢ occurs in function g.) To make
g closed with respect to type variables, free type variable ¢ is lifted and ¢ is abstracted
with s in an uncurried abstraction as below.

let val g = Ats. Ax:t. Ay:s. (x,y)

val f = At.Mx:t.(g {t,int} x 2, g {t,bool} x true)
in

f {int} 3; f {real} 3.14
end

We call this transformation Tolmach’s lifting. This transformation is always possible
in A\Y because all the application sites of a type function can be determined syntac-
tically in this language. Then type arguments for an uncurried type abstraction are
passed as one parameter. Thus, only one parameter is necessary for type information
in a type function after applying this transformation.

It should be remarked that variable x is also lifted in function g, because the
type of x is t that is lifted. Without such lifting, the transformation may result in
an ill-typed program. Thus, the transfromation depends on which variables should
be considered free in a type function. This information is usually determined during
closure conversion to avoid closures for known functions [1]. Thus, this lifting trans-
formation and closure conversion must be performed at the same time. That makes
the implementation of a compiler based on this transformation compilicated.

It is still expensive to construct a type environment every time a type function
is called. Thus, Tolmach used the method performing type substitution lazily. In



his implementation, almost all parts of a type enviornment are created statically and
each construction of type environment consumes only 2 words.

2.2. Aggressive Lifting and Typing Problems

In this subsection we consider optimized type parameter passing and show that
it is impossible to express such type parameter passing in standard polymorphic A-
calculi. The following example is taken from [26]. At runtime of the program, the
type environment {s x s} for pair is created every time the function repair is called.

let pair = At.Ax:t.(x,x)

repair = As.\y:s. pair {sx s} (y,y)
in

repair {int} n
end

To overcome this inefficiency, Tolmach suggested lifting the type parameter for the
function pair out of repair as below.

let pair = At.Ax:t.(x,x)

repair = As.At.\y:s. pair {t} (y,y)
in

repair {int} {intxint} n
end

Now that the type paramter {intxint} is closed, that can be constructed statically
and there are no need of runtime construction of types. If a calling site of repair is in
another type function, the lifted type argument may be still open. Thus, in order to
eliminate runtime construction of type parameters we must apply this transformation
from the inner-most type functions repeatedly. Thus, if there are nested calls to type
fucntions, the number of type arguments may increase exponentially.

Furthermore, this program is not well-typed in the second order A-calculus because
t is not equal to s X s in the function repair. One solution of this problem is to use
translucent types (or manifest types) proposed for modules of Standard ML [7, 14]
and recently used to solve the typing problem of closure conversion of the second
order A-calculus in [16]. For the program above, we can add the constraint ¢ = s x s
at abstraction of ¢ in repair and such modification makes the program well-typed
in the extended calculus. However, this solution is not satisfactory when we consider
other kinds of manipluation of types as we see below.

In order to avoid the increase of the number of type parameters, the transformation
is modified so that two type absractions are uncurried as below.



let pair = At. ) x:t.(x,x)

repair = As.\y:mi(s). pair {m(s)}.(y,y)
in

repair {(int,intxint)} n
end

where uncurrying is made explicit by using type abstraction that takes a pair of
types (7, 72) instead of uncurried form of type abstraction Aty,ts.e. We call this
transformation aggressive lifting in this paper. In this transformation, the number
of the type arguments does not increase and the runtime construction of types are
replaced by projections of type parameters. However, even if we use translucent
types for this transformation, it is impossible to make this program well-typed. The
constraint that the type argument s of repair must hold is mo(s) = m(s) X m(s)
and we cannot express this constraint by translucent types. So, we propose a calculus
more suitable to express manupulations of type parameters in the next section.

3. A Calculus for Explicit Type Passing

In this section, we propose the explicitly typed calculus that is suitable to express
wide range of manipulations of type parameters and thus the base of the interme-
diate language of compilers of ML. There have been many studies that proposed
passing some kind of type information to implement various aspects of programming
languages such as polymorphic record operations and overloading [27, 18, 11]. For
the theoretical basis of these approaches, various calculi have been proposed. The
calculus we propose can be considered as an extension of the implementation calcu-
lus for compilation of polymorphic records of Ohori [18, 19] and qualified types of
Jones [12, 11]. We mainly use terminology of qualified types in this section. The
language of our calculus is defined as follows:

Monotypes 7 == b |t | T—7T | =7

Predicates ¢ T | {1, Pn)

Polytypes o == 1 | Vty,... tp.T

Evidences w = b | u | w—w | mw) | (wi,...,wy)

Ezpressions e == ¢ | o | Az:te | eres | Ay, ... tne | e{m,..., T} |

Auzg.e | elw] | p | let x:0 =e; in ey

Compared to A7, the language is extended by predicates and evidences. Evidences
are corresponding to runtime type parameters for our purpose and are classified by
predicates. Monotypes are extended by type ¢ = 7 which is the type for the function
that takes a type parameter classified by ¢. Evidences (or runtime type parameters)
have the definition similar to that of monotypes to express corresponding type in-
formation. However, a type variable is replaced by an evidence variable v and it is
extended by tuple (wy,...,w,) and projection m;(w), which are used to pass multiple
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Figure 1: Rules for Evidences

types as one parameter. The abstraction Au:¢.e represents the function which takes
type information corresponding to ¢. The runtime type information w is given to an
evidence abstraction by evidence application e[w]. We call this calculus A= | where
A is evidence abstraction and = is the type of evidence abstraction.

Now we will give the type system for the calculus. First, we need the following
three kinds of contexts.

Type contexts A =ty T,
Predicate assignments X = upidp, ..., Un:0p
Type assignments I' == xym,..., 2,7,

We extend the usage of type contexts to general sequence of type variables. For
example, we sometimes write polytypes and type abstractions as VA.7 and AA.e.
There are two kinds of judgments as follows:

A; Y w:p  evidence w satisfies predicate ¢
A; YT F e:m expression e has type 7

where we assume that all free type variables in ¥ and I are included in A. The rules
for judgment A; ¥t w:¢ are shown in Figure 1. Intuitively, A;wui:¢pq, ..., uy:0, = w:¢p
means that evidence w is the type information corresponding to predicate ¢ if we
assume each wu; is the type information corresponding to predicate ¢;. According
to our specific purpose, these rules are simplified compared to the rules of qualified
types. However, they are extended for tuples and projections of evidences.

The typing rules for the calculus are similar to the rules of qualified types and are
shown in Figure 2. Only the rules for type abstraction and application, and evidence
abstraction and application are shown. Other rules are standard. For primitive p of
type Vt.7, in AV, we assume that the corresponding primitive p in A requires the
evidence (or type parameter) which satisfies predicate ¢, and thus has type Vt.¢, = 7,
in A= .

For this calculus, we consider the standard call-by-value operational semantics:
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Figure 2: Typing Rules

(Au:¢p.e)[w] is reduced to e[w/ul.

3.1. Representing Type Passing in A~

In this subsection, we consider how various ways of type lifting we have considered
can be represented in this calculus without causing typing problems. The formal
account of the translation from the source language A" to the calculus A= is given in
Section 4.

The following program is the translation of the first example corresponding to
Tolmach’s lifting.

let val f = At.Au:(t).Ax:t.
let val g = As.Au:(t,s).A\y:s. (x,y)

in
(g {int} [(¢t,int)] 2, g {bool} [(t,bool)] true)
end
in
f {int} [(int)] 3; £ {real} [(real)] 3.14
end

For the function f and g, the evidence abstractions are added after the type abstrac-
tions. The evidence parameter u for g takes an evidence corresponding type variables
t and s. Thus, all the necessary type information can be obtained from one parameter
u in the function g. It can be easily checked that this program is well-typed in A= .

Furthermore, as the example shows, we do not have to lift type and value abstrac-
tions. Thus we can separate the lifting transformation from closure conversion and
the design of compilers can be simplified. Furthermore, this representation is more
closely reflecting Tolmach’s implementation since it is explicitly expressed that all
runtime type arguments to a type function are passed as one argument.



Furthermore, we can express various manipulations of type parameters without
causing the typing problems we described in Section 2.2. In the following example,
the type parameter for the function pair is lifted from the function repair as type
parameter us.

let pair = At.Au:(t). dx:t.(x,x)

repair = As.Auj:(s).Aug:(s x s).Ay:s. pair {sx s} [u] (y,y)
in

repair {int} [(int)] [(int x int)] 1
end

The function pair has type Vt.(t) =t — t x t and pair {s x s} has type (s X s) =
(s X s) — (s x 8) X (s xs). Since uy satisfies predicate (s x s) and (y,y) has type
s X s, pair {s x s} [us] (y,y) is well-typed.

In the same way, uncurrying of type parameters can be done while preserving
well-typedness of the program as the following. The type parameter consiting of s
and (s x s) is passed as one parameter to repair and its second component is used
as the type parameter to the funciton pair.

let pair = At.Au:(t). Mx:t.(x,x)

repair = As.Au:(s,(s X s)).Ay:s. pair {s x s} [me(u)]l (y,y)
in

repair {int} [(int, (int X int))] 1
end

4. Type Lifting Translation

In this section, we will give the translation from source calculus A" to calculus
A= . First, we consider a general translation that is non-deterministic and involves
not only Tolmach’s lifting but also aggressive lifting. The translation is given as
A; YT F e~ e where A, X, and I" are a type context, a predicate assignment, and a
type assignment of A= respectively. The closed expressions are translated under the
empty contexts.

The rules for the translation are shown in Figure 3. In rule (let), the body of
the type abstraction, ey, is translated by assuming that type information is passed
by fresh evidence variable u. This variable u is assumed to hold the evidence that
satisfies predicate ¢. However, no condition is given for the predicate ¢ in this rule.
That makes the translation non-deterministic and gives the ability to express various
ways of lifting. As we see later, several restrictions are imposed in this rule depending
on the strategies of lifting. After the translation of ey, ey is translated by assuming
that = takes an evidence that satisfies predicate ¢.

A type application is translated into the combination of type and evidence appli-
cations by rule (tapp). The applied type parameter is determined from the type
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(let)
A NS wgiT ke v ef AST, VA G =7 ey v ¢

A YT F let VA1 =AA’e; in ey ~ let m:VA' ¢ = 7 = AN Aup.e] in ¢

(tapp) (prim)
A w: ¢ [T/A] A Y w: dplT/t]
AT, VA §y = 1o b a{T} ~ 2{T}Hw] A; 5T p{r} ~ p{7}[w]

Figure 3: Translation from \Y to A~

assignment of the variable. If the variable with type Vtq,...,t,.01 = 7 is ap-

plied to the type 7q,...,7, then it requires the type parameter corresponding to
&[T,y Tty ... ta]. So the evidence w that satisfies ¢q[m,..., 7 /t1, ..., t,] un-
der ¥ is applied. For primitive p, p{7} is applied to the evidence w which satisfies
Bol7/1).

For this deductive system, we proved that the translation preserves the type and
operational behaviour of a program. Operational correctness is proved by the method
of logical relations.

4.1. Tolmach’s Lifting

Tolmach’s lifting is formulated by restricting the rule (let) as follows:

AJAL S (A A, T F ey~ € AT, VA (AA) = 71 ey ~ €
A YT F let o:VA''r = AA'e; in ey
~ let ©VA'(AAY = 7 = AA Au:(A, A') €] in €]

where the predicate ¢ is restricted to A, A’. This choice of predicate A, A’ for u is
always enough to translate e;. By this restriction the translation is almost determin-
istic. However, the deduction of F is still non-deterministic and may give redundant
translation such as f= 7;((b)) : b. Thus, Tolmach’s algorithm is obtained by restricting
the (var) and (proj) rules as follows:

A ui(ty, ...ty ()it

4.2. Aggressive Lifting
In order to avoid runtime construction of types, we restrict evidence w as follows:

wi=w | u | mw)

11



where ' is a closed evidence that does not contain projection m;. A translation ob-
tained with this restriction does not have to construct type parameters at runtime,
since there is no evidence variable within (...) and —. However, the restricted de-
ductive system does not provide the algorithm for the translation because it is not
known at the translation of let what open evidences are necessary to translate e; and
thus what predicate ¢ should be used for translation of e;. Thus, we will define the
deterministic version of the deductive system that provides a translation algorithm.

The deterministic version of the deductive system is obtained by collecting nec-
essary types during translation. The relation has the following form: A;u;I"
e;(d1y .y dm) ~ €5(d1, oy Py oy Omrk) , Where w is the current evidence vari-
able for obtaining type information. The predicates which u must satisfy are created
during the translation of e. First we assume that u must hold the evidences for
®1,...,0m. Then, the predicates necessary to translate e, ¢,,11...Ppmak, are ap-
pended to the list. The rules of the translation are given below.

¢[7/A'] is open.
Ay u; T VA . = 1o b {7} (o1, ..., dn) ~ 2{T}Hmn1(w)]; (b1, . .., dn, O[T/A'])
d[T/A'] is closed. 0;0 b w : ¢[T/A]
AT VA . = n b a{T} ¢ ~ x{T}Hw]|; ¢
AJAu T e (AJA') ~> el Asu's T VA g = T F e ¢ ~ ey 0"
AsusTF let o:VA'.r = AA’.e; in ey ¢
~ let ©:VA'.¢ = 7 = AA" Au:p.€] in e}; ¢

In case of the first rule, since predicate ¢[7/A’] is open, if we create the evidence
here, the runtime construction of the evidence is necessary. Instead, we add predicate
¢[7/A'] to the list of the predicates and apply z{7} to the projection of current
evidence variable u. However, since in the second rule ¢[7/A’] is closed the evidence
to corresponding to it can be created statically. In the rule for let, expression ey
is translated with (A, A’). That guarantees that the type information for every free
type variable can be obtained from u and tag-free garbage collection can be performed
by using type information obtained from w.

The following lemma ensures that there is a deduction in the original system
corresponding to a deduction of the algorithmic version of the deductive system.

Lemma 1 If Aju; T Fe;dp~ €@, then Aju:g'; T e~ €.

Polytype VA'.¢ = 7 in A7 is called a translation of VA'.7 under A if FTV(¢) C
A U A’. This relation is naturally extended to type assignments.

Lemma 2 Let IV be a translation of I' under A. If A;T' e : 1y, then for all ¢ there
exist € and ¢ such that A;u; T Foe; ¢~ el

12



It is clear from this lemma that for §;() - e : 7 there exists a deduction of 0;u;
e; () ~ ¢€/;(). This ensures the existence of a translation for an arbitrary well-typed
closed program.

5. Identifying Evidences with Values

In this section, we propose a calculus which is more expressive for manipulation of
evidences and is more suitable for an intermediate language of a compiler. In calculus
A=, there are three kinds of abstractions and applications for types, evidences, and
values. Abstractions and applications for types are completely ignored at runtime,
though enable type checking of programs. However, the latter two are implemented in
the similar way. Thus, by identifying the latter two we obtain the following calculus:

Monotypes 7 == b |t | 7—71 | T(¢) | (71 X...xXTp)

Predicate ¢ = 1 | {d1,...,Pn)

Polytypes o == 1 | YA.T

Evidence w = b] El) | w—ow| mw) | (W, ,wn)

Expressions e == ¢ | v | Av:me | eres | AAe | e{r,...,7} | p |
R(w) | (e1,...,en) | mi(e) | let z:0 =e; in ey

where T'(¢) is the type for the evidences satisfying predicate ¢, E(e) coerces ex-
pressions to evidences, and R(w) coerces evidences to expressions. Since evidences
are abstracted by usual A\ we call this calculus A= . In order to illustrate advan-
tages of A= over the previous calculus, the tuple of expressions (ey,...,e,) and its
type (11 X ... X 7,) are included in the calculus. As the evidences may contain free
variables the judgments of the calculus has the following forms:

AT w: ¢ evidence w satisfies predicate ¢
A;I'Fe: 7 expression e has type 7

The rules to identify evidences with values are defined as follows:

AT Ee:T(9) ATHw: ¢
ATHE(E): ¢ AT ERW):T(h)

Other rules are analogous to those of A= .

This calculus is more expressive in manipulation of evidences (or type parameters).
For example, since type parameters can now be considered as values they can be
components of tuples. Furthermore, it is possible to express a function that returns
a type parameter as bellow.

AT (t).R(E(x) — E(x)): T(t) — T(t — t)

This function takes the evidence corresponding to type ¢ and returns the evidence
corresponding to ¢ — ¢. Optimization such as uncurrying abstractions for a type

13



parameter and a value is formulated more simply than in the previous calculus. Thus,
we think that this calculus is more suitable for an intermediate language of a compiler.

Now we consider the representation of closures in both calculi. Since evidences
are distinguished from usual values in A= | an evidence cannot be a component of
a usual record. Thus, the evidence and value environments of a closure cannot be
merged into a single environment. For example, the closure of Ax:t.y for y = 1 and
t = int is represented in A= as follows:

(At Au:t. Nyt x:ty){int},int, 1)

In order to keep uniform representation for closures we cannot eliminate the evidence
abstraction in the code and evidence component of a closure even if there are no free
evidence variables. Thus the closure of Ax:int.x+y for y = 1 is represented as follows:

(Aw:( ) Ayzint Azzint.x +y, (), 1)

where the evidence environment is empty ( ). Furthermore, we need a special con-
structor for closures since it has an evidence as a component.

However, in A= an evidence can be a component of a record of expressions. Hence,
the evidence and value environments can be merged into a single environment. The
closures of Ax:t.y and Az:int.x + y are represented as follows:

(At Az:(T'(t) x t).\x:t.mo(2)){int}, (R(int), 1))
(Ayzint Azint.x 4+ y, 1)

As we see in the example above, this representation saves space for empty evidence
environments in closures.

Even if we use A™ , we need a special constructor for closures to hide the type
of the environment of a closure. However, as described in [16], we can represent a
closure of A= by a standard tuple and a package expression of existential types. A
closure of type 71 — 73 can be represented as a value of type 3t.(t — 71 — ) X t
where ¢ is the type of the environment.

6. Implementation

An experimental compiler is implemented as a translator from Core SML to C by
using Kit Compiler as front end. An executable program produced by the compiler
uses type parameters for tag-free garbage collection and non-parametric operations
such as polymorphic equality.

The compiler is organized as in Figure 4. The Kit Compiler translates Core SML
to the explicitly typed intermediate language Lambda that is similar to A¥. We have
designed another intermediate language called IL. It is based on calculus A= proposed
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Core SML

! Kit Compiler
Lambda

l A-normalize

IL

! Optimization

IL

! Type lifting

IL

! Record flattening, Uncurrying

IL

l Closure conversion

IL

1 Translation to C

C

Figure 4: The organization of the compiler

in this paper and on A-normal forms [5, 25]. Since A" can be considered as a subset of
A=, IL is used not only after type lifting but before type lifting. Then, all the stages
except the last translation to C are implemented as type-preserving translations.

The type-checker for IL is implemented so that the intermediate code produced
by each translation can be type-checked during debugging of the compiler. Type-
checking of intermediate code has greatly helped development of our compiler.

We implemented the type lifting translation so that Tolmach’s and aggressive
lifting can be chosen when we compile a program. Evidences (or runtime type pa-
rameters) are implemented by the data structures similar to Tolmach’s. For aggressive
lifting, the representation of evidences is simplified because only projections of evi-
dences are necessary at runtime. Type parameters are passed to functions as usual
C arguments.

Uncurrying optimization is performed after type lifting to eliminate the abstrac-
tions and applications introduced by type lifting if possible. Closures are represented
by a special constructor as the abstract closures described in [16]. However, closures
do not consists of code, type environment, and value environment but just code and
environment as described in Section 5.

The polymorphic equality function of SML is implemented as C function which
uses runtime type information. In Tolmach’s representation, the function must per-
form computation corresponding to reductions of projections of evidences. However,
for aggressive lifting the type arguments to the polymorphic equality function are
also lifted and then such reductions are not necessary at all. That simplifies the im-
plementation of polymorphic equality in aggressive lifting and makes the use of type
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information in aggressive lifting cheaper than in Tolmach’s as described in the next
section.

7. Measurements

We measured the cost of passing and using type parameters in aggressive and
Tolmach’s lifting. In general, when a type parameter corresponding to an open type
is passed, Tolmach’s lifting constructs a new type environment and allocates 2 words
and aggressive lifting has to perform a projection on a type parameter. We first
compared the cost of these operations.

Function repair in Section 2.2 allocates 4 words for usual pairs. Thus, if we
compile this program by instantiating pair and repair to monomorphic functions,
this program consumes 4 words for usual data structures for pairs. This is same for
aggressive lifting. However, Tolmach’s lifting allocates 2 words for type parameters
and thus allocates 1.5 times memory in the whole. An even worse situation for
Tolmach’s lifting is the following program.

let proj = Atity. Ax:ty X ty. 71 (%)

pair-proj = As.Ay:s. proj {s,s} (y,y)
in

pair-proj {int} n
end

Record flattening optimization of our compiler converts the function proj from the
function that takes a pair into the function with two arguments. So if we compile
this program by instantiating proj and pair-proj to monomorphic functions or
aggressive lifting, this program allocates no words. However, the executable program
compiled by Tolmach’s lifting allocates 2 words for each call of pair-proj. So, even
if we considered heap allocation of programs asymptotically, the program compiled
by Tolmach’s lifting may show unexpected behaviour.

Execution time of these programs are shown in Figure 5. The column Mono shows
the results when the programs are compiled by instantiating polymorphic functions
to monomorphic functions. The numbers in the parentheses are the ratio to the cases
of aggressive lifting. It shows that aggressive lifting is more than 15 % faster than
Tolmach’s. If we compare aggressive lifting to the monomorphic cases, we cannot see
any significant difference in performance.

In order to measure the cost using type information, we measured the execution
time of programs using the polymorphic equality function. In Tolmach’s representa-
tion, the computation corresponding normalizing type parameters must be performed
because of lazy reduction of types. The test programs polyeql and polyeq2 repeat-
edly applies polymorphic equality to integers, polyeq2pair to pairs of integers. Be-
fore calling polymorphic equality, there are one nested call of polymorphic function
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Aggressive Tolmach Mono
repair 10.40 | 12.33 (1.19) | 10.36 (1.00)
pair-proj 5.31 | 7.70 (1.45) | 5.30 (1.00)
polyeql 6.43 | 9.23 (1.44) -
polyeq2 6.43 | 10.91 (1.70) -
polyeq2pair 16.53 | 21.85 (1.32) -

Figure 5: Basic benchmarks: execution time excluding garbage collection time (sec)

in polyeql and two netsted calls in polyeq2 and polyeqg2pair. The results are also
shown in Figure 5. In both cases aggressive lifting is faster than Tolmach’s. In case
of aggressive lifting, the type argument to the polymorphic equality is identical for
polyeql and polyeq2 and their execution time are almost the same. On the other
hand, if compiled by Tolmach’s lifting, there are one more nesting of type environ-
ment in case of polyeq2 and the difference in Tolmach’s and our representation in
polyeq2 is bigger than that of polyeql. However, since checking equality is much
expensive for polyeqg2pair, the relative difference of the two is smaller.

We measured the allocation and execution time of standard benchmarks for both
aggressive and Tolmach’s lifting. The rusults are shown in Figure 6. The results
for SML/NJ 0.93 are also shown to show the excutable programs are fast enough to
consider the effect of the strategies of type lifting.®

The excutable programs compiled by aggressive lifting are always faster than those
by Tolmach’s except for mandelbrot, which is compiled to a completely monomporhic
program. The biggest difference about 10 % in execution time is seen for 1ife. As
reported in [21], 1ife spends almost all the execution time for polymorphic equality.
(We did not implement minimal typing [3].) Thus, the difference comes from the
time spent for polymorphic equality. This seems also true for boyer since there is no
difference in allocation.

As for allocation the differences between Tolmach’s and aggressive lifting are min-
imal except for simple. For simple, the executable program compiled by Tolmach’s
lifting allocates 35 % more memory. This seems to happen because most polymorphic
functions are inlined in the other programs. Thus, much bigger difference might be
seen when we consider separate compilation.

8. Conclusion

We have proposed several calculi for explicit type passing that enable us to for-
malize compilation of polymorphic programming languages like ML as phases of type

Tt is not fair to compare allocation of excutable programs of our compiler to that of SML/NJ
because ours uses stack for frames of functions, but SML/NJ uses heap.
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Aggressive Tolmach’s SML/NJ 0.93
Time | Allocation Time | Allocation | Time | Allocation
life 7.78 3.79 | 8.55(1.10) | 3.92 (1.03) | 12.04 39.63
knuth-bendix | 8.63 16.78 | &8.82 (1.02) 16.81 (1.00) 11.72 62.88
simple 21.75 20.43 | 22.71 (1.04) 27.61 (1.35) 31.45 153.85
boyer 2.48 3.42 | 2.58 (1.04) | 3.42 (1.00) | 1.70 9.52
mandelbrot 7.83 0.00 | 7.82 (1.00) | 0.00 (1.00) | 10.65 46.48

Figure 6: Results for standard benchmarks: time is the execution time (sec) excluding
garbage collection time and allocation is in M words.

preserving translations. Furthermore, we have formulated a translation from the
source language to the proposed calculus as a non-deterministic deductive system
and proved its correctness. The translation algorithm that avoids runtime construc-
tion of type parameters has been given as a special case of the deductive system.

Based on the calculus, we have designed an intermediate language and imple-
mented a compiler of Core Standard ML. The results for simple benchmarks show
programs compiled by aggressive type lifting are more than 15 % faster at execution
time than those compiled by Tolmach’s. For standard benchmarks, the advantage is
much smaller in general. This seems to happen because most polymorphic functions
are inlined. Thus, we would like to extend our compiler to separate compilation and
study various strategies of type passing in presence of separate compilation.
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