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Abstract. Pushdown systems are a model of computation equipped
with one stack where only the top of the stack is inspected and mod-
ified in each step of transitions. Although this is a natural restriction,
some extensions of pushdown systems require more general operations
on stack: conditional pushdown systems inspect the whole stack contents
and discrete timed pushdown systems increment the ages of the whole
stack contents.

In this paper, we present a general framework called pushdown systems
with transductions (TrPDS) for extending pushdown systems with tran-
sitions that modify the whole stack contents with a transducer. Although
TrPDS is Turing complete, it is shown that if the closure of transductions
appearing in the transitions of a TrPDS is finite, it can be simulated by
an ordinary pushdown system and thus the reachability problem is de-
cidable. Both of conditional and discrete timed pushdown systems can
be considered as such subclasses of TrPDS.

1 Introduction

The theory of pushdown systems (PDS) has been successfully applied to the
verification of recursive programs such as Java programs [4]. The essential re-
sult is that the reachability problem of a PDS can be decided efficiently by
representing the rational (regular) set of configurations with automata [5, 10,
8]. Several extensions of PDS have been studied to widen the applications of
PDS, and their reachability problems can often be decided by translating them
to ordinary pushdown systems.

Esparza et al. introduced pushdown systems with checkpoints that can check
the whole stack contents against a rational language [9] to model runtime stack
inspection used for security checks. They showed that pushdown systems with
checkpoints can be translated into ordinary pushdown systems, and thus the
reachability problem is decidable. We call this extension conditional pushdown
systems in this paper [12].

Abdulla et al. introduced discrete timed pushdown systems [2] that combine
timed automata [3] and pushdown systems. Stack symbols of a timed pushdown
system are extended with the notion of ages, and timed pushdown systems have
a transition that increments the ages of all the symbols in the stack. Even with



this extension, timed pushdown systems can also be translated into pushdown
systems to decide the reachability problem.

In this paper, we generalize these extensions and present a general framework
called pushdown systems with transductions (TrPDS) for extending pushdown
systems with transitions that modify the whole stack contents with a finite-
state transducer. Transductions are the relations induced by transducers. Since
TrPDS is Turing complete in general, we are interested in a finite TrPDS where
we impose the restriction that the closure of transductions appearing in the
transitions of a TrPDS is finite. Both of conditional and timed pushdown systems
can be formulated as simple instances of finite TrPDS. We then show that a finite
TrPDS can be translated into an ordinary PDS by generalizing the construction
of Abdulla et al. for timed pushdown systems [2] and the reachability problem
of a finite TrPDS is decidable. As a nontrivial example of finite TrPDS, we
introduce conditional transformable pushdown systems that can check the whole
stack contents against a rational language and modify the whole stack contents
by a function from stack symbols to stack symbols.

We also show that the saturation procedure that calculates pre*(C) for the
rational set of configurations C' can be directly extended to finite TrPDS. This
is a generalization of the saturation procedure for conditional pushdown sys-
tems [14]. A rational set of configurations of finite TrPDS is represented with
automata that modify the rest of input by a transduction.

2 Preliminaries

2.1 Transducers

A transducer is a structure (Q, I, A, I, F') where @ is a finite set of states, I' is
a finite set of symbols, A C Q x '™ x '™ x @ is a finite set of transition rules,
I C @ is the set of initial states, and F' C () is the set of final states.

A computation of a transducer is a sequence of transitions of the following

form:
w1 /wy w2 /w) wn [wy,
Do D1 ce Pn

where (p;_1,w;, w.,p;) € A. When we have the computation above, we write

’ ’
Wy Wy /W] W,

pg —————— py,. The language L(t) C I'* x I'* of a transducer t is defined
as follows:

L(t) = {{w1,w2) | qr M) gy for some gy € I and gp € F'}

A letter-to-letter transducer is a transducer where A is restricted to A C

QxI'xI xQ, i.e., aletter-to-letter transducer is an automaton over I" x I.

2.2 Transductions

A transduction T over I'* is a relation between I'* and I'*, or a function from I'*
to P(I'*). A transduction 7 is a rational transduction if there is a transducer t



such that 7 = L(t). A transduction 7 is a length-preserving rational transduction
if there is a letter-to-letter transducer t such that 7 = L(t).

We write Transd for the set of all length-preserving rational transductions
and use a metavariable t to denote both a transducer and a transduction if there
is no danger of confusion. In the rest of this paper, we use the term transduction
for a length-preserving rational transduction.

The composition of transductions t;,t; € Transdp is defined as that for
relations:

t oty = {(w,w") | (w,w') € ty, (W, w") € ta}

Transdp is closed under composition and (Transdp,o,U,1,0) is a semiring
where 1 = {{w,w) |w € I'} and 0 = @

By considering t € Transd as a rational language over I' x I', we introduce
(left) quotient and nullability v(t) defined as follows:

(-, ) . Ywy € I'*,wy € '™l Transdp — Transdp
(e,e)” 1t =t

(v, )t —{<ww>|<7w7w>€f}

(yw, y'w') "t = (w, w')({(7,7) )

J(t) = {{5} (e,e) et

o) otherwise

where € € I'* is the empty string. Transd  is closed under quotient and quotient
distributes over composition in the following sense.

Proposition 1. (wy,wa) (t oty) = U (<w13w3>71’tl ° <w3,w2)71t2)
w3eplw1\

A transduction t € Transdr can be considered as a function from I'* to
P(I'*). We call this function application action, use the postfix notation, and
write wt: wt = {w' | w’ € I'*, (w,w’) € t}.

The action is defined for a language L by Lt = |J wt.

weL
We can also inductively define action by using quotient:

c=v() o= < (vtr)
~y'er

where w QW = {ww’ | w' € W}.

2.3 Pushdown Systems

A pushdown system (PDS) is a structure P = (Q, I, A) where @ is a finite set of
control locations, I" is a finite set of stack symbols, and A C Q x (I'" x I'*) x Q

is a finite set of transition rules. For a transition rule (p, (w1, ws),q) € A, we

write p ‘M g. A configuration of PDS P is a pair (g, w) of location ¢ € @



and string w € I'*. We write Conf(P) for the set of all configurations @ x I'*.
We define transition relation = C Conf (P) x Conf(P): (p,wiw) = {(q, waw) if
w1 /w2

p——qand we I'".

We say a PDS P = (Q,I,4) is a standard PDS if |w| = 1 for all p &
q € A. Tt is clear that for a given PDS P we can construct a standard PDS
equivalent to P by introducing extra states. We use a nonstandard PDS to
simplify the construction of PDS for simulating TrPDS.

3 TrPDS : Pushdown Systems with Transductions

TrPDS is an extension of PDS that may modify the whole stack contents by
applying a transduction.

A TrPDS is a structure (Q, I, T, A) where @ is a finite set of control locations,
I' is a finite set of stack symbols, A C Q x (I' x I'* x T) x Q is a finite set

of transition rules, and 7" C Transdp is a finite set of transductions. For a
t
transition rule (p, (v, w,t), q) € A, we write p <ﬂ> q and call the triple “y/w|t”

stack effect.
A configuration of TrPDS P is a pair (¢, w) of location ¢ € @ and string
w € I'*. We write Conf(P) for the set of all configurations @ x I'*.

Definition 1 (Labelled transition relation). We define a labelled transition
relation = C Conf(P) x Conf(P): (p,yw') 2 (g, ww"y if § is p M q and

. . s
w” € w't. We also write ¢c; = c3 if ¢ = co for some § € A.

Let us consider an example of a TrPDS and its transitions.

Ezample 1. Let t be (b,b)" ((a,a) U {(a,b))*. TtPDS P = (Q, X, {t,1},{61,02})
a/e|t b/el1
where Q = {q0,q1,42}, ¥ = {a,b}, 61 = g < g1 and & = g1 —— go. The

following are some examples of transitions.

(qo, aaa) 2} (g1, ba) % (g2, a)

8

(0, aaa) 2> (g1, bb) 2 (g2, b)

The effect of transition rule 6 = p G q with stack effect ¢ is captured by the
following function effect, below: (p, w) 2 (q,w'"y iff w'" € effect, (w).

effect., )¢ I =PI
effect,i(e) =9

effect. o (Y'w') = {

waw't ify =~
o) otherwise

Definition 2. The closure (T) of a transduction set T under composition and
quotient is inductively defined as follows.



- TC(T) and 0,1 € (T).
- [ftl,tg S <T>, then t oty € <T>
— Ifte (T), then (v,~) 't € (T) for all v,y € I.

Definition 3. A TrPDS P over T is called finite if (T') is finite.

Example: Conditional pushdown systems A conditional pushdown system
is a pushdown system extended with stack inspection [9,12]. A transition rule
has the form (p,(y,w,L),q) € A where L is a rational language over stack
symbols®: it induces the transition relation (p,yw’) = (q,ww’) if w’ € L. The
transition can be taken only when w’ € L.
Let £ be the finite set of rational languages appearing in transition rules.

Here, we define (£) inductively as follows:

— LC(L)yand @, € (L).

— If Ll,LQ € <£>, then L1 N Ly € <£>

—IfLe (L), theny 1L e (L) forallye .

The set (L) is finite since quotient distributes over intersection and there are
finitely many languages obtained from each rational language with quotient.

For a language L, we define L = {{w,w) | w € L} and then L is a length-
preserving rational transduction for a rational language L. For the composition
and the quotient on L, we have the following.

~ ~ —~— ~ /:\i/ 3 — A~/
Lol =LAl () E={7 F 11=7
) otherwise
Then, a conditional pushdown system over £ can be considered as a finite
TrPDS over the transduction set T'= {L | L € L}. It is clear that (T') is finite
since we have (T') = {L | L € (L)} from the properties above.

Example: Transformable pushdown systems A transformable pushdown
system is a pushdown system that may modify stack by applying a function
over stack symbols. This generalizes the operation of discrete timed pushdown
systems [2] that increment the ages of stack symbols. A transition rule has the
form (p, (y,w, f),q) € A where f is a function from I" to I': it induces the
transition relation (p,yw’) = (g, wf(w’)).
For a given f € I' — I', we define a transduction f = {(w, f(w)) | w € I'*}.
It is clear that f is a length-preserving rational transduction and the following
hold. R
—_— ~ 1 4 =
fiofa=faofi () 'f= {f iy .f(v)
0 otherwise
Note that o in fyo fi is the composition of functions, i.e., fao f1 = Av. fo(f1(v)).
A transformable pushdown system over F = {fi, fa,..., fn} can be consid-
ered as a finite TrPDS over T' = {fl, Far ... ,ﬁ} It is clear that (T') is finite
because (T) C {f | f € I' — I'} U {0}.
3 We use the definitions of transition rule and transition relation inspecting whole
stack without its top [12] rather than inspecting whole stack [9].



Example: two-counter machines Any two-counter machine without input
can be simulated by a TrPDS P = (Q, {0, 1, A}, {00, t0, 01, t1 }, A). The transduc-
tion 99 decrements the number of 0’s in the stack by replacing the first 0 with A
and the transduction ty checks whether stack contains 0 or not. 0; and t; have
the same behaviors for 1’s.

Since 09 # 03 # -+ # 0 # --+, P is not a finite TrPDS. The reachabil-
ity problem of two-counter machines is undecidable and thus the reachability
problem of TrPDS is undecidable in general. However, we will show that the
reachability problem of a finite TrPDS is decidable.

4 Construction of PDS from TrPDS

From a given finite TrPDS, we construct a finite PDS by lazily applying a trans-
duction to stack. It is a generalization of the construction introduced by Abdulla
et al. [2] for simulating discrete timed pushdown systems. By the construction,
we prove that the reachability problem of a finite TrPDS is decidable.

4.1 Construction

For a given TrPDS P = (Q, I, T, A), we construct a PDS P’ = (Q, ' U(T), 4A’).
Let ¢ be a transition rule p M q € A. We have transition (p,yw’) 2

(g, ww”) in P for w” € w't where the transduction t is applied to the rest of
stack w’. In ordinary pushdown systems, we can only modify the top of stack
at each transition. Thus, we delay the application of the transduction in P’ by
keeping it on stack.

We construct three kinds of transition rules of P’ as follows:

.. v/ wt , . v/ wlt
APPLY -transition p——q€e A ifp——qgeA
tltg/fQOtl

COMPOSE-transition : p ———— p € A’ if 41,4 € (T)

. /7 (vt )
UNFOLD-transition :p————pe A" ifte(T)and v,y €

With APPLY -transition rule, we have transition (p,yw') = (g, wtw’) in P’.
The application of transduction t is simulated lazily with COMPOSE-transition
rule and UNFOLD-transition rule.

For § € A, we have a corresponding APPLY -transition rule in A’ and we

write = for a transition relation obtained from 4. Similarly, we write £ and £
for transition relations induced by COMPOSE-transition rule and UNFOLD-

transition rule, respectively. We also write (p, w) = (g, w’) if (p, w) 2 (q,w’) for
< / U ’
some 6, (p,w) = (q,w’), or (p,w) = (g, w’).

5

. . . Cu Uz & .
For § € A, we introduce many-steps transition relation = = =*0 =0 = in
P’ (o is used as binary relation composition).



Example 2. The following are the transitions of the constructed PDS that cor-
respond to those in Example 1.

(g0, aaa) LIN (qo, taa) L4 (g0, bt a) 2 (1,1t a) £ (q1,¥a) e {q2,a{a,a)”t)
(g0, aaa) 2 (qo, taa) 2 (g0,b¢'a) 2 (q1,1¢a) S (g1, ¥a) £ (2.b (0, b)'¥)

(For the sake of simplicity, we abbreviate (a,b) 't as t.)

o [
For 0 =p < q € A, we have (p,w) = (¢, w’) iff w’ € Effect,(w) where Effect
is inductively defined as follows.

Eﬁectww“
Effect. /,,1(¢)
EﬁeCt'y/w|t(t,)

Effect 1 (7'')

Eﬁ”ectv/w“(t"y’w’)
Effect., ), (titaw’) =

—~

ru(T)” = P(I"u(1)")

Il
——Q X

{wtw'} ify=4+
& otherwise
wt((y,7)" ') w'}
fect, i ((t2 0 t)w')

I
ey~

4.2 Simulation

To reveal a relation between TrPDS and PDS, we consider the difference in
how a transduction is applied to stacks of a TrPDS and a PDS. For a TrPDS, a
transduction is applied to its stack immediately. On the other hand, for the PDS
constructed from the TrPDS, the corresponding transduction is lazily applied
to its stack when the PDS takes transitions that unfold transductions. This
difference is reflected in the definitions of effect, (w) and Effect (w).

To relate stacks of a TrPDS and a PDS, we introduce concretization to obtain
the set of stacks of the TrPDS from a stack of the PDS.

Definition 4 (concretization of stack).

-1 (Cu(T) = PI)
lell = {e}
[ywl| =~ < [Jw]]
[tw]l = Jlwlt

The gap between effect, (w) and Effect,(w) is filled by applying the con-
cretization of stack.

Lemma 1. For all stack effect o, || Effect, (w)| = effect, (]Jw||)
To establish the simulation, we consider transitions of a set of configurations

and define posts(C) for a TrPDS and Posts(C) for a constructed PDS.

5
posts(C) ={c | ce C,c % d} Posts(C)={c |ceC,c= "}
73/



Transitions of a set of configurations can be related by extending concretization
for configurations.

Hp,w) | = {{p,w) [w' € lwll}  ICI= | llel

ceC

Theorem 1. For any set C C Q x (I'U(T))*, posts(||C||) = ||Posts(C)]|.

Proof. Let § be a transition p A q.

8
[Posts(O)|| = [{¢' [ c € C,e= |
= [{{g,w") | (p,w) € C,w" € Effect, (w)}|
{{g, ') | (p,w) € O, w'" € || Effect, (w)]|}
={{g,w') | {p,w) € C ,w" € effect,(|w])} (Lemma 1)
{{g,w) [ {p,w) € [|C]|, w" € effect, (w)}
{

O

We then consider one-step transitions of a set of configurations that may
apply any transition rule.

post(C) = U posts(C) Post(C)={c | ce C,c = '}
[ J<PA

It should be noted that the definition of Post(C) does not directly correspond to
that of Posts(C) because Post(C') captures one-step transitions while Posts(C)
captures many-steps transitions. However, we have the following weaker corre-
spondence.

Posts(C) C Post™(C) || Post(C)|| € [C'U ] Posts(C)]|
€A

From Theorem 1, for any set C C Q x I'*, we have posts(C) = ||Posts(C)||
and obtain the following corollary.

Corollary 1. For any set C C Q x I'*, post*(C) = ||Post™(C)]|.

4.3 Computing post™

In this section, we show the forward reachable set post*(C') for a rational set of
configurations C is rational and effectively computable. Thus, the reachability
problem of a finite TrPDS is decidable.

To compute post*(C), we use Corollary 1 and apply usual (forward) reach-
ability analysis to calculate Post™(C') [8]. For calculating the concretized set of



configurations || Post™(C)||, we introduce a tail recursive version of ||-|| as follows:

-1 (CuT)" x(T) = P(I™)

lelly = @)

Irolly = (3 < 0l s
~y'er

Jtwlfs = ol

el = fhwly

We prove the equivalence of the two versions by induction on w.
Proposition 2. |w|t = ||w]|.

It should be noted that the function || - ||” is realized as a transducer %. The key
of the construction is to consider accumulator a as a state of the transducer.

To be exact, we construct the transducer ¢ = ((T"), I, A, I, F') where I = {1}
and F = {t|te(T),v(t) ={e}}.

’

a 27, ((y,v)y la)ye A forally/ el
a5 (toa) € A for all t € (T)

Then, we have ||w|’ = we.

For a rational set of configurations C, Post*(C) is rational from forward
reachability analysis. Thus, we can effectively compute (Post™(C))c since it is
the image under transducer ¢ of rational set Post™(C).

Finally, we obtain the following theorem.

Theorem 2. For a rational set of configurations C' of a finite TrPDS, post*(C)
1s rational and effectively computable.

5 Conditional Transformable Pushdown Systems

We consider conditional transformable pushdown systems as a nontrivial sub-
class of finite TrPDS. Such pushdown systems may have both kinds of transition
rules of conditional and transformable pushdown systems. L

A conditional transformable pushdown system is a TrPDS (Q, I, L U F, A)
where £ is a finite set of rational languages over I'" and F is a finite set of
functions over I'. We show that <£U}' > is finite and thus any conditional trans-
formable pushdown system is a finite TrPDS. Hence, the reachability problem
of conditional transformable pushdown systems is decidable.

In order to show that (£ U F) is finite, we introduce a notion of émplementa-
tion. We define an algebra (U, e, (-,-)”') which is closed under composition and
quotient as follows:

— o: U x U — U is a binary operator that corresponds to composition, and

4 This transducer is not letter-to-letter.



— (- ->_1 :I'x I'x U — U is a ternary operator that corresponds to quotient.
Then, we define an implementation of a finite transduction set T'.

Definition 5 (Implementation of T'). For a given finite transduction set T,
we call an algebra (U, e, (-, -)_1) equipped with functions F: T — U and G : U —
Transdp an implementation of T if the following hold:
—GoF =1
—Gue Uz)lz G(up)o le(UQ)
= G(() W =) G
We use the following proposition to show that (T') is finite.

Proposition 3. For a given finite transduction set T, (T') is finite if there is a
finite implementation of T.

The following property is the key to the construction of a finite implementa-
tion of LU F.

Proposition 4. Let L C I'™* and h: I' — I'. Then, we have ho L = h/—_l\(z) oh.

This property implies any sequence hyoLjohgoLgo-- -oh;oL; can be normalized
as (LY oLbo---oLl)o (ﬁ; ohpo---0 l?l) It means that the inspection of the
stack can be done before modification. R

Based on this property, we define an implementation Zp = (Cx (F), e, (-, ~>_1)
with F' and G where C is inductively defined as follows:

— LCCand @, €C.

— If L1,Ly € C, then Ly N Ly € C.

If LeCand~yel,theny 'L eC.
If LeCand h€F, then h"'L €C.

The set C is finite because v~ 1(h~1L) = h=1((h(y))" L), h" (g7 (L)) = (g o
h)il(L), and hil(Ll N Lz) = hilLl N hilLQ.
We define the operators and functions of the implementation as follows:
(Ly,hy) @ (Lo, ha) = (L1 N hi'(L2), hy o ho)

<'77 7/>71 <L7 h> = <,}/—1L7 <")/, ,y/>71h>

Pl _ <L7*IL> 1ft€£.andt:L
(I'*,t) otherwise
G((L, 1) —Toh

With respect to F' and G, we need to show that the three conditions of
implementations hold: G o F = id and G((v,7') 'u) = (7,7) 'G(u) are easily
proved from the definition and we use Proposition 4 to prove G(u; e uy) =
G(ul) o G(HQ)‘

Finally, we obtain the following corollary of Theorem 2.

Corollary 2. For a rational set of configurations C' of a conditional trans-
formable pushdown system, post™(C) is rational and effectively computable.



6 Saturation Procedure of TrPDS

We extend the saturation procedure of PDS for finite TrPDS which computes
the set pre*(C) backward reachable from a rational set of configurations C' [5,
10].

First, we review the saturation procedure for ordinary pushdown systems.
Then, we extend the saturation procedure for TrPDS based on that for condi-
tional pushdown systems where a rational set of configurations is represented by
an automaton with regular lookahead [14]. In particular, we introduce automata
with transductions (TrNFA) that apply transductions to the rest of the input
and extend the saturation procedure so that it constructs a TrNFA from a given
finite TrPDS.

6.1 Saturation Procedure for PDS

We review the ordinary saturation procedure. To simplify our presentation, we
first consider the set of configurations backward reachable from a single config-
uration (gy,e). For a given PDS P = (Q, I', A), we construct a finite automaton
A, that accepts pre*({gs,e)) where ¢f € Q.

The saturation procedure starts from the initial P-automaton Ag and it-
eratively updates P-automaton A; into A4;;; until saturation. The saturation
procedure is described as follows:

1. Let the initial P-automaton Ay be (Q, I, &, Q, {qs}).
2. If p M g € A and ¢ % p’, then we obtain A;;1 by adding transition

(p,7,p) to A;.
3. Repeat 2 until saturation.

This procedure always terminates since @ x I' X @ is finite, and we obtain a
fixed point P-automaton A, .

The constructed P-automaton A, has the following property and hence we
have L(A,,) = pre*({gs, €))-

Theorem 3. p %)*q iff (p,w) = (g, ¢).

The saturation procedure above can be used to compute pre*(C) for a ratio-
nal set of configurations C. Let C' C @) x I'* be a rational set of configurations
accepted by P-automaton B = (P, I, A’,Q, F'). Without loss of generality, we
can assume B has no transition leading to an initial state. We construct new

PDS P' = (QU P, I, A”) where A = AU {pli q| {p,y,q) € A}

Then, pre*(F x {e}) in PDS P’ is equal to pre*(C) in PDS P. Hence, we only
consider the set of configurations backward reachable from a single configuration
with empty stack in the following sections.



6.2 TrNFA

To represent a rational set of configurations of finite TrPDS, we introduce au-
tomata with transductions (TrNFA) that apply transductions to the rest of the
input.

A TrNFA is a structure A = (Q, X, A, T,1,F) where ) is a finite set of
states, X is a finite set of symbols, A C @ x (X — (T)) x Q is a finite set of
transition rules, T is a finite set of transductions, I C () is a set of initial states,
and F' C @ is a set of final states. (T)) is the smallest set S such that (T) C S

and S is closed under union U.

We write p —ﬂ; q if {p,0,q) € A and o(y) = t. Transition p —'Y—H—> q means

that the automaton consumes v from input, transforms the rest of input by t,
and changes its state from p to q.
Intuitively, the composition of two transitions could be defined as follows:

t "It
q if pl‘%r,rl‘—%q,and'y”eﬂ

’

WA A Y ot
_

With the above definition, finitely many transitions accrue by the composing the
two transitions, and then the associativity of the composition of transitions does
not hold. On the other hand, we obtain only one transition by composing two
transitions in usual automata and the associativity of the composition holds.

To deal with this problem, we define product ® over X* — ((T")) and introduce
pseudo formal power series semiring (S, ®, @, 1,0).

Definition 6 (Pseudo formal power series semiring).

1 ifw=¢e

o, 0= w.0
0 otherwise

S =" (T, 1:>\w.{

(01 ® o2)(w) = U (<w37w2>_101(w1) ° 02(w2))

WwW=wiws
|ws|=|w2]

(0’1 D O'Q)(U)) = 0'1("(1)) U O'g(w)

We define inductively transition relations as follows:

1
p—p

g .
pP—q if (p,o,q)eA
71802, if pZgand g > r

The associativity of composition of transitions holds as a result of bundling

transitions.
\ \

Wewritep})—t%qifpﬁqanda(w):t,andpiu%qifpiu—t%qand
. wt .. .
v(t) = {e}. Even if p — ¢, we have a transition from p to ¢ consuming w only
when the rest of input is successfully transformed by t. We define the language
of automaton : L(A) = {w | p = q for some p € I,q € F}.



6.3 Computing pre* of TrPDS

To compute pre*({gs,e)) of T'PDS P = (Q,I', A, T), we start from the initial
TeNFA Ao = (Q, 1N A", T, Q,{qs}) where A" = {(p, \7.0,q) | p,q € Q}.

To construct a TrNFA that accepts pre*((gs,€)), we extend the saturation
rule as follows:

Jwlt t .
—Ifp 2 qge A, q L p’ in the current automaton, and (p,o,p’

)
then we replace (p,o,p’) by (p,0 ® o’,p’) where ¢/(y) = t®+t and o'(v")
ify#9"
The saturation procedure always terminates and calculates the fixed point au-
tomaton A, because X — ((T') is finite.

We have the following two lemmas that bridge a computation of TrPDS and
a behavior of TrNFA.

IS
=0

Lemma 2. If (p,w) =* (q,€), then p AL> q.

Lemma 3. Ifp j—“) q, then (p,ww’) =* (g, w") for all w" € w't.

From these lemmas, we have the following theorem that implies L(A,) =
pre*((gs,€)).

Theorem 4. p AL> q iff (p,w) =" {(q,¢).

6.4 Construction of Automata from TrINFA

We construct a finite automaton A’ from a finite T'NFA A = (S, X, AT, I, F)
to show that pre* is rational and effectively computable.

The construction is very simple. We construct the finite automaton A’ =
(S x (T, X, AT x{1},F x {t|te (T),v(t) = {e}}) where each state p; of

. t
A’ means that we must apply t to the rest of input. For each p L q € A, we

add transition <pu,*y’, q(,y,ﬁ1>71uot> into A’ for all v/ € I'Ju € (T)).

To distinguish transitions of finite automata from those of TrNFA, we write
p¢ — pl, for transitions of A’. From the definition of A’, we have L(A’) = {w |
p1 —> g and v(t) = {e} for some p € I, ¢ € F, and t € (T)}.

Then, we have the following two lemmas: Lemma 4 states that the con-
structed automaton captures behaviors of TrNFA and Lemma 5 states the other
direction.

Lemma 4. If p :ﬂ.l{% q, then there exist ty,tz,.. ., t, such that pp — ¢, ... ,
p1— qq, and t=J4.
1<i<n

Lemma 5. If p; — ¢, then p N q and t C ' for some t'.

These lemmas imply the equivalence of TrNFA A and the constructed au-
tomaton A’ : L(A) = L(A’). Thus, pre* is rational and effectively computable.



7 Related Works

Conditional pushdown systems are introduced for the analysis of programs with
runtime inspection [9, 12]. The second author of this paper recently applied them
to formalize a subset of the HTML5 parser specification [14]. A similar extension
of pushdown systems is considered in [7] to formulate abstract garbage collection
in the control flow analysis of higher-order programs.

We should clarify the relation between discrete timed pushdown systems of
Abdulla et al. [2] and transformable pushdown systems in this paper. Stack
symbols of a discrete timed pushdown system are equipped with a natural
number representing its age, and thus stack is a string over I" x N. However,
as the region construction of timed automata [3], it is sufficient to consider
Ne<m = {2 ] 0 <z <m} U{w} where m is the maximum number appearing in
conditions of transitions. Then, a discrete timed pushdown system can be con-
sidered as a transformable pushdown system. Abdulla et al. [1] also introduced
dense timed pushdown systems and showed that the state reachability problem
is decidable through the translation to pushdown systems. The idea of the con-
struction is a combination of the region construction and the construction for
TrPDS. However, the construction is very involved and it is not clear whether
we can clarify the construction by using TrPDS.

We have extended the saturation procedure to compute pre* for finite Tr-
PDS by introducing TrNFA. This procedure is closely related to the generalized
reachability analysis of pushdown systems with indexed weighted domains [13].
It will be possible to refine the pseudo formal power series semiring in this pa-
per to an indexed semiring and consider the saturation procedure as that for
weighted pushdown systems.

In regular model checking [6], transitions of a system are modeled by a length-
preserving rational transduction. The verification is conducted by computing the
transitive closure of a transduction. From a viewpoint of reachability analysis,
our approach and regular model checking are similar but we handle push and pop
operations that are not represented by length-preserving rational transductions.

8 Conclusion and Future Works

We have introduced a general framework TrPDS to extend pushdown systems
with transitions that modify the whole stack contents with a transducer. The
class of finite TrPDS generalizes conditional and transformable pushdown sys-
tems, and even a combination of the two systems. A finite TrPDS can be simu-
lated by an ordinary pushdown system, and the saturation procedure for com-
puting pre* can be extended for finite TrPDS.

We only consider manipulations of stack that can be represented with a
length-preserving rational transduction. We believe that the framework of Tr-
PDS can be extended for general rational transductions. However, it will be
necessary to revise the definition of the closure based on quotient and the rep-
resentation of transductions must be taken into account.



Most of our results on TrPDS depend on the finiteness of the closure of a
transduction set. Thus, it is natural to ask whether it is decidable to check the
closure of a transductions set is finite. As far as we know, this problem has not
been investigated yet. We have shown that the following problem is undecidable
by using undecidability of uniformly halting problem [11]:

For a given set T' of length-preserving rational transductions, decide
whether or not the semigroup generated from (T, o) is finite.

However, it seems that this result cannot easily be extended for the closure of a
set of transductions in this paper.
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