On the Runtime Complexity of Type-Directed Unboxing

Yasuhiko Minamide

nan@kurims.kyoto-u.ac. jp

Jacques Garrigue

garrigue@kurims.kyoto-u.ac. jp

Research Institute for Mathematical Sciences

Kyoto University
Kyoto 606-8502, Japan

Abstract

Avoiding boxing when representing native objects is essen-
tial for the efficient compilation of any programming lan-
guage. For polymorphic languages this task is difficult, but
several schemes have been proposed that remove boxing on
the basis of type information. Leroy’s type-directed unbox-
ing transformation is one of them. Onme of its nicest prop-
erties is that it relies only on visible types, which makes
it compatible with separate compilation. However it has
been noticed that it is not safe both in terms of time and
space complexity —i.e. transforming a program may raise
its complexity. We propose a refinement of this transfor-
mation, still relying only on visible types, and prove that it
satisfies the safety condition for time complexity. The proof
is an extension of the usual logical relation method, in which
correctness and safety are proved simultaneously.

1 Introduction

Compared to explicitly typed first order traditional lan-
guages, polymorphically typed functional programming lan-
guages have to face a number of challenges for their efficient
compilation. One of them is choosing the right representa-
tion for data whereas, due to polymorphism, its actual type
cannot be completely known at compile time.

In dynamically typed languages like Lisp, the basic ap-
proach to data polymorphism has been to make the repre-
sentation homogeneous, that is to cover differences between
various data types by making them all fit into a uniform
representation. Then polymorphism is not a problem since
one knows about the representation of objects even with-
out knowing their actual types. This approach is simple,
but is also utterly inefficient since it means that any data
which cannot fit directly into this representation, being too
large for instance, has to be coerced, generally by allocating

To appear in the proceedings of the 1998 International Confer-
ence on Functional Programming (ICFP). Copyright 1998 by the
Association for Computing Machinery, Inc. Permission to make
digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redis-
tribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1
(212) 869-0481, or permissions@acm.org.

the real data somewhere (e.g. in the heap), and by using
a handle (e.g. a pointer) in place of it. Any access to the
real data will then require a level of indirection, particularly
costly when compared with directly passing the data via a
register.

The above method, i.e. allocating data structures in the
heap and passing a pointer instead, is called boxing, and is
even used in statically typed polymorphic languages. De-
spite their static typing, the presence of polymorphic func-
tions makes difficult the use of heterogeneous data represen-
tation. In the context of polymorphic languages, choosing
more efficient heterogeneous representations is called unbox-
ing.

There are many approaches to perform unboxing, but
we will here concern ourselves with only one of them, type-
directed unboxing transformation. The idea, formalized by
Leroy [8], is to actually make data representation fit its static
type, exactly like it would be done in a monomorphically
typed language. However, since polymorphism means that
the same value may have different static types according to
its context, coercions between different representations are
needed. This optimization’s main advantage is that it is
both cheap and effective. Since it relies only on types, no
special analysis is needed, and separate compilation is still
possible. Simultaneously, types capture the whole control
flow of a program, making it possible to apply the transfor-
mation almost everywhere.

While this transformation has been proved correct in
terms of denotational semantics, it is known that it is in-
correct in terms of complexity: optimizing may result in
raising the complexity order of a program. Counter exam-
ples were found after a similar optimization was introduced
in a publicly released compiler [20].

We think that this fact reveals the need for a formal
treatment of the complexity induced by program transfor-
mation based optimization techniques. In general such tech-
niques are only proved correct in terms of semantics, but
not in terms of complexity. Their runtime behavior is only
demonstrated by benchmarks, which tell about their normal
case behavior, but nothing about worst case.

As an example of such a treatment, we present here a re-
finement of Leroy’s type-directed unboxing transformation,
but this time we also give a proof that this new transfor-
mation preserves the time complexity of programs. Notice
that the transformation we propose here is not guaranteed
to improve the performance of programs (actually its perfor-
mance is worse than Leroy’s in most cases), but only not to
raise their complexity order. The results given here are the-

oretical, but we believe that our approach and proof method
can be extended to more efficient optimizations, making it
possible to have both performance and theoretical results.

This paper is organized as follows. We start with an in-
formal discussion describing type-directed unboxing and its
pitfall, then introducing our approach. In Section 3 we de-
fine the language we will use in the rest of the paper. We re-
call Leroy’s approach in Section 4. Our new transformation
and its proof of correctness are given in Section 5. Finally
we review related works, and give directions for future work.
Detailed proofs are included in Appendix.

2 Informal Discussion

2.1 Type-Directed Unboxing Based on Coercions

Compilation is a translation from a source language to a
lower-level target language. It is however important to con-
sider that this target language has in fact more structure
than a simple assembly language. That is, for a compiled
program to run correctly, all compiled code and data must
not only be syntactically correct, but must also share the
same conventions.

Let us consider a function freal real — real. In
monomorphic languages, this function will be sensibly im-
plemented as a procedure taking its argument and return-
ing its result in a floating point register. Let us suppose
we do the same thing in a polymorphic language. Notice
first that in polymorphic languages, a polymorphic function
froly : Yor.ao = oo must use a more generic calling convention
than frea since nothing is known about the runtime type for
a. Using boxing, fooy will take boxed values which can be
represented in one word, and are in the best case passed
through a general purpose register. However, it may hap-
pen that at runtime f,o1y is used with type real — real by
instantiation.

We have now two possible calling conventions for the
type real — real: unboxed real in a floating point register
for freal, or boxed real through a general purpose register
for fooly. Raw type information is not enough to choose
the right calling convention. For this very reason, many
implementations of polymorphic languages have just chosen
a single calling convention, that of fuoy, which is universal
but requires all data types that do not fit in one word to be
always boxed.

In order to solve this problem, Leroy [8] has shown that
by introducing coercions when a polymorphic function is
specialized, one can have a function always match the calling
convention of its type. His transformation acts on the pro-
gram annotated with polymorphic types, and inserts boxing
and unboxing so that monomorphic parts of a program can
use unboxed representations of values.

The key point here is to distinguish between boxed and
unboxed versions of types: we have both unboxed real type
and boxed bozreal type for floating point numbers; and con-
sider coercions between them: wrapreal coerces real into
boxreal and unwrapreal coerces boxreal into real. Now a
function f of type Va.ao — « can be safely instantiated into
boxreal — bozxreal, since boxreal uses the same calling con-
vention as type variables. However if we want to give it
the type real — real, we have to introduce coercions where
representations change:

UNWrapreql—reql (£) : real -> real =
fn x => unwrapreal(f(wrapreal x))

Thanks to the coercions, the calling convention of this new
function matches its type.

Boxing and unboxing are necessary not only for special-
ization of polymorphic functions, but also for constructing
and accessing some data types. It is not desirable, not even
possible, to apply coercions to all data types: coercing a
whole list is too expensive, and references cannot be co-
erced since one would have to make copies of them, changing
their semantics. For such data constructors, values have to
be coerced to their fully boxed representation before putting
them in the constructor. Shao called these data types inco-
ercible [19] and we follow his terminology. We give here the
example of a function g of type real — real being coerced
to boxed representation, before assigning it to a reference
for instance.

Wrapreal%real(g) : boxreal -> boxreal =
fn x => wrapreal (g(unwrapreal x))

This idea of introducing coercions according to types can
be extended to full ML and is implemented in [8] and [20].
Benchmarks show that it works very well in general. How-
ever, recently several researchers have noticed undesirable
behavior of some programs when compiled by this method.

2.2 Problem

Let us put it short: the type-directed unboxing transforma-
tion changes the complexity of some programs with respect
to time and space. The problem stems from the behav-
ior of boxing and unboxing on functional values. When
acting on non-functional values, boxing and unboxing be-
have as inverses, so that we have the following property:
unwrap (wrap(v)) and wrap(unwrap(v)) are both evaluated
to v. However, this does not hold for function types. For
example, by applying boxing and unboxing to f of type
real — real we obtain the following function.

UNwrapreal—real (Wrapreal—n‘eal () =
fn x => unwrapreal((fn y =>
wrapreal (f (unwrapreal y)))
(wrapreal x))

This expression is not evaluated to the value of £, but to a
value wrapped with two lambda abstractions. From a deno-
tational semantics point of view, they have the same behav-
ior. However, this changes the behavior of programs with
respect to time and space. This situation occurs in several
ways in programs obtained by Leroy’s transformation.

Let us consider the specialization of the polymorphic
identity function to some monomorphic type. If we co-
erce the polymorphic identity function to the type (real —
real) — (real — real), we obtain the following function

idreal—sreal =
fn x => UNwWrapreal—real (1d (Wraprealﬁreal (X)))

Applying this identity function to a function f : real — real
results in applying wrapping and unwrapping to f; we obtain
Unwrapreqi—real (Wrapreai—sreal (£)). Once we have noticed
this effect of boxing and unboxing, we can easily construct
a program where the type-directed unboxing transformation
changes the complexity. Here is such a program.

let val id = fn x => x
fun iter £ 0 = 0.0
| iter f n = f (iter (id f) (n - 1))
in
iter (fn x => x + 1.0) n
end

By applying type-directed unboxing id is replaced by
id;eqi—sreal- Thus each recursive call wraps the function
f with coercions and closures and increases its size. All
these wrappings make the complexity of £ change from con-
stant to linear in n, so that program will run in order n?
after transformation, while its naive execution would have
resulted in linear time. The same problem also occurs with
respect to space. The direct execution of the program re-
quires only a constant amount of space independent of n,
though it requires space proportional to n if we use Leroy’s
representation. This violates the rule of safety for space
complexity [1]. In this specific example, coercions can be
eliminated by partially evaluating (id (wrapreai—reai £)),
but in general this is not possible: the code of id might be
unknown —defined in another compilation unit (this is an
advantage of type-directed unboxing), or abstracted as pa-
rameter to a module—, or the reduction might increase the
size of a program in an unacceptable way (e.g. if id contains
side-effects).

The same problem occurs when we use incoercible data
types such as references and lists. Let us consider the pro-
gram: !(ref f). Before creating the reference cell £ must
be coerced into fully boxed representation and after derefer-
ence it must be coerced back into unboxed representation.
Thus after the execution of this program we obtain not f
but the following value.

Unwrapreal—real (Wraprealﬁreal (f)) =
fn x =>
unwrapreal ((fn y => wrapreal (f (unwrapreal y)))
(wrapreal x))

The same problem occurs for a pair of dereference and as-
signment r := !r. In practice this situation occurs quite
frequently and may cause some programs to abort unex-
pectedly running out of memory.

2.3 Our Approach

If we trace back what is happening in the above examples, we
see that we have an unlimited number of coercions applied
successively to the original function. The natural answer is
to cut such infinite chains.

The way we do cut these infinite chains is by always keep-
ing an untouched reference version of the original function,
together with the specialized version. From this reference
version, we can obtain any degree of specialization of the
function by applying a single coercion. That is, we can ob-
tain any form of our function by applying at most two coer-
cions to the original code: one to build the reference version
from the original function, and one to build the specialized
function from the reference version.

There is still a question: what should be this reference
version? The simplest answer is also the only possible one:
the fully boxed form of the function. Indeed if we do not
want to use any runtime information, there is no other rea-
sonable way to define a reference version, exactly for the
same reasons some compilers choose to use only the fully
boxed form.

In our scheme, there are two different representations for
a function: the generic representation is just its fully boxed
version, while specialized representations are pairs of a spe-
cialized version and the fully boxed version. Going back
to our running example, the specialized representation of £
is a pair of functions (fi,f2) where f; and f2 have type
real — real and boxreal — boxreal respectively. Applica-
tion is performed by extracting the first component of the
pair before applying it to an argument v: (m (f1,f2))v.
Using this specialized representation, the generic represen-
tation of a function can be obtained by just extracting the
second component of the pair: w2 (£1,£2). This makes wrap-
ping a function particularly simple.

Conversely, from the generic representation, one can ob-
tain a specialized version by applying coercions as before.
Let fo be a function of type boxreal — boxreal. The spe-
cialized representation is obtained by the following expres-
sion.

(fn x => unwrapreal (fo (wrapreal x)), fo)

Now the first component is wrapped by coercion and lambda
abstraction. Our idea is summarized in Figure 1.

In this approach boxing and unboxing will not cause a
function to be wrapped by coercion repeatedly, growing for-
ever: every time we build a new specialized version, we start
from the same untouched generic representation. As a re-
sult, our type-directed transformation preserves the com-
plexity of programs.

The translation of our previous example using this rep-
resentation of functions is shown in Figure 2. Details of the
translation process will be explained in the formal develop-
ment. Recursive calls of iter from its body of iter do not
change the second component of £ and pass the following
value for f.

(unwraprealﬁreal (Wrapreal—breal (fn x => x + 1.0)),
WIraPreal—real (fn x => x + 1.0))

Although the first component of this value is wrapped in
UNWrapreqi—sreal a0d Wrapreqi—real, 1t remains the same for
each recursive call. Hence the complexity of the program is
still order n with respect to evaluation steps and it runs in
a constant amount of memory.

This approach does not solve another problem of coer-
cion based unboxing. This problem is related with space-
complexity in an execution model using tail-call optimiza-
tion. Let us see the following program.

fun apply (f, x) = f x
fun f x =
if x < 0.0 then x else apply (f, x - 1.0)

Since apply (f, x - 1.0) is a tail call in £ and £ x a tail
call in apply, it shall be possible to execute f in constant
space. The type of apply is (@ — B) x @« — 3, but it
is used at type (real — real) X real — real. As a result,
our transformation (as Leroy’s) will insert coercions around
apply’s call in £, making it a non-tail call. The transformed
program will need linear space.

Still, this problem shall not be overstated. It may appear
with some special tail calls, like the one above, but it does
not appear with tail recursion, at least in a framework with-
out polymorphic recursion. That is, in usual ML recursion,
all recursively defined functions are monomorphic, and no
coercion needs to be inserted in recursive calls. Recursive
tail calls are correctly transformed into tail calls. For this
reason we believe that our transformation is space-safe, even
in a model containing tail-recursion optimization.

Specialized

(real — real) x (boxreal — boxreal)

T2 Generic
H
(boxreal — boxreal)
H

UNWrap,.cqi—real X id

Figure 1: Represention of Functions

let val id = (fn x => x, fn x => x)
fun iter f O 0.0

(unwrapreal—n‘eal (£), £7)

| iter £ n = m(f) (iter (let val f’ = my(id) (ma2(£))
in
end)
(n - 1))
in
iter (fn x => x + 1.0, wrapreaimreai(fn x => x + 1.0)) n
end

Figure 2: Example of Translation

3 Source and Target Languages

In this section we define a language to formalize our type-
directed unboxing transformation and discuss the relation
between the complexity of source programs and their trans-
lations. In order to make possible discussing the complex-
ity of programs, we adopt an operational semantics which
counts evaluation steps.

The source language is basically the core language of ML.
Our integers require boxing. Effects of incoercible data types
such as reference or lists are simulated by a single incoercible
type 7 pack with constructor pack and destructor unpack
[19].

= a |int | T 7| TXT | Tpack

Vai...on.T

oj1]2] ...

w= i | x| ee| Ave | let z=ein e | (ee) |
m(e) | m2(e) | pack(e) | unpack(e) |
iter(e,e€,€)

® . Q93
I

Instead of recursive definitions, which would make complex-
ity semantics rather involved, we include iter(n, v, f) which
applies the function f to v repeatedly m times. This is
enough to write critical examples and simplifies our pre-
sentation. For instance, translation using Leroy’s method
would change the complexity for both of the following pro-
grams (they correspond to the two examples presented
above).

let id = Az.z in
iter(n, (0, \z.z), \y.(m2(y)m1(y), id(m2(y))))
iter(n, (0, A\z.z), Ay.(m2(y)m1(y), unpack(pack(m2(y)))))

The target language is extended with the type boxint for
boxed integers and the coercions wrapint(e) and unwrapint(e)

between int and boxint.

T u= alint | T 71 | 771 | Tpack | boxint
e = i| x| e | Are| let z=ecin e |
(e,e) | mi(e) | male) | pack(e) | unpack(e) |
wrapint(e) | unwrapint(e) | iter(e,e,e)

The source language is considered as a subset of the target
language. Thus we will present the type system and opera-
tional semantics only for the target language.

To this language we apply Milner’s type discipline [10]
and use the syntax-directed typing rules presented in [3].
Typing judgments have the following form:

'ke:r

where ' is a finite mapping from variables to polytypes.
Important rules of the type system are shown in Figure 3.
Other rules are standard, and we omit them to concentrate
on essential parts.

We define the operational semantics of the source and
target languages by natural semantics. For integers we con-
sider unboxed integers i and boxed integers i. The values
are defined as follows:

ve=ili| (vze) | (o) | ()

where 7y is an environment, ¢.e. a finite map from variables to
values, (7, z, e)) is a closure with an environment v, and ((v))
is a value of type 7 pack. Then the operational semantics is
defined as the following relation:

yhelpv

The rules are given in Figure 4. Their meaning is standard
except for the subscript n. This subscript indicates the num-
ber of evaluation steps needed to obtain the value v. The
definition of evaluation of iter(ei,e», e3) requires two aux-
iliary rules with judgments of the form ; vi,v2 |» v. This

Fke:7 I'ke: 7 pack

't e: boxint

I'ke:int

'+ pack(e) : T pack T F unpack(e) : 7

I'(z) =Vai,...,a,.7 Dom(p) ={ai,...

T F unwrapint(e) : int

T F wrapint(e) : boxint

Pktei:mi Dyx:Clos(r,I)Fes:m

Lkz:p(r)

I'Flet =¢; in ex: 7™

I'kFey:int T'hex:7m Dhes:T7— 171

It iter(ei,e2,63): 7

Figure 3: Typing Rules

yFerln v

YHerdm v v Fedn (v1,v2)

yrzliy(®) AFilid

v F(e1,e2) bntmt1 (v1,v2)

v mi(e) dnt1 vi

Yheidi (Y e yheslmuve A[ua/albelnw

yEXze i (v, z,e)

Yhelni 'yl—e¢nf

Y Feies ¢l+n+m+1 v

yFelnw v e dn (v)

v F wrapint(e) {n+1 @
yhel v g /Tl Fes fm v

v F unwrapint(e) {n+1 &

yhei i

7k pack(e) Iny1 (v)) 7 F unpack(e) Lnt1 v

yherdmv: yheslnvs biva,vsdpv

yElet z =€ in ez li4m41 v

v iter(ei, ez, e3) bitmtntpt1 v

1 >1 l_i—l U2, «77:1:76» lm UI ’Y[Ul/x] Fe Jrn v

Fouv,v' L1 v

F; U2, «77 T, 6» ~Lm+n+1 v

Figure 4: Operational Semantics

relation means that v is obtained by applying v: to the clo-
sure v2 repeatedly ¢ times. We write y e, vifykFe lrp v
for some k < n.

Semantic typing of values is defined as follows:

if'=U1:T1 and'ZUQ 1T,
(v,z,e)) : 1 — 72 if there exists I" such that E~v: T
and 'z : 71 Fe: 7.

ifEv:T

Then the standard type soundness holds for both source
and target languages: if an expression has type 7 and it is
evaluated to v, then v has type 7.

4 Leroy’s Type-Directed Unboxing

Before formalizing our approach we briefly review Leroy’s
type-directed unboxing transformation. For details see
Leroy’s paper [8].

First, we define two translations of types |-| and [-], where
|7] is the type of the specialized representation of 7 and [7]
is the type of the generic representation of 7. A term of type
7 in the source language is translated into a term of type |7|
in the target language.

I = = |n| = n
I x| = |n| x|
lo] = «
|7 pack| = [7] pack
lint|] = int

[=7 = [n]—=[r]

[r1 % ﬂ = [nlx[n]

[T pack] = [7] pack
[int] = boxint

The specialized representation of 7 in 7 pack is fully boxed
since 7 pack is an incoercible type.

We then define coercions between specialized and generic
types: wrap_ coerces a value of |7| into [r] and unwrap_
coerces a value of [7] into |7|.

wrap,(e) = e
wrap,,..(e) = wrapint(e)
wiap, ae) = Aywrap, (e(unwrap,, (4)))
wrap., pack (6) = €
wrap,_ .. (e) = let r=ein

(wrap,, (m1(z)), wrap,, (m2()))

unwrap,, (e
unwrap,,,, (e

(e)
(e)
unwrap,.,., (c)
(e)
(e)

e
unwrapint(e)
Ny-unwrap.,, (e(wrap,, (1))
e
let r=ein
(unwrap_., (m1(z)), unwrap,, (m2(z)))

unwrap, ... (e
e

unwrap, ..

Programs are translated by rules of the form '+ e : 7~
e¢’. The only case where something special happens is when
a variable gets specialized:

I(z) =Vai,...,an.t Dom(p) ={ai,...,an}
TFz:p(r)~ Sy,(z:7)

where specialization S, is defined by mutual recursion with
generalization G, as follows:

Sy(e:a)
Sp(e :int)
Sp(e Tpack)
)
)

= unwrap,,,(e)
e

e
Az.S,(e(Gp(x i 1)) = T2)
= 1let r=-¢e in

(Sp(mi(z) : 1), Sp(m2(z) : 72))

= Wrapp(a)(e)
(mt e

)
)
G (e Tpack)
)
)

e
Ae.G,(e(Sp(x 1)) @ T2)
= let r=ein

(Gp(mi(z) : 1), Gp(m2(x) : 2))

The other rules of the translation are straightforward.
To illustrate this transformation, the two programs in
Section 3 are translated as follows:

let id = Az.x in
iter(n, (0, Az.z),
Ay.(m2(y)mi(y), .
(Ax'unwrapint—»int (Zd(wrapint—)int(z))))ﬂ-2(y))

iter(n, (0, Az.z),
Ay.(m2(y)mi(y),
unwrap;,,; ., (unpack(pack(wrap,,,; ... (72(y))))))

As we explained earlier, wrap;,,_,;,, and unwrap,,,_,;., in-
troduced by the translation make the complexity of both
programs change from linear to n.

5 Formalization of Our Approach

Along the lines of the formalization of Leroy’s type-directed
unboxing transformation in the previous section, we formal-
ize our approach and prove that it preserves the complexity
of a program with respect to evaluation steps.

5.1 Translation and Type Correctness

In this section we formalize the unboxing transformation
based on our representation of functions and prove its type
correctness. First, as for Leroy’s translation we define two
translations of types: |7 is the type of the specialized repre-
sentation of 7 and [7] is the type of the generic representation
of 7.

|T1 — T2 = (|T1|—>|T2|)><[T1—>T2]
|T1 X To = |T1|X|T2|
la] = «
|7 pack| =[] pack
lint] = int
[Tl — T2 = [7'1]—)[7'2]
[Tl X To = [Tl] X [TQ]
[@] = «
[T pack] = [7] pack
[int] = boxint

As you can see, these translations only differ from Leroy’s
translations by the specialized representation of functions.
As we explained informally, this representation is a pair of a
specialized function of type |r1| — |72| and the fully boxed

function of type [r1 — 72]. You may notice also that the
generic translation is closed under substitution:

[P]([7]) = [p(7)]

where [p] is a type substitution such that [p](a) = [p(@)].

We then define the operations wrap_(e) and unwrap_(e)
where 7 is a type in the source language and e is an expres-
sion of the target language: wrap, coerces a value into fully
boxed form and unwrap,_ coerces a value into the unboxed
form for 7, starting from fully boxed form.

wrap,(e) = e
wrap;,,.(e) = wrapint(e)
wiap,, ile) = m(e)
wrap, pack (6) = ¢
wrap,_ .., (e) = let r=ein
(wrap,, (1 (2)), wrap,, (72(z)))

unwrap,(e) = e

unwrap;,,,(e¢) = unwrapint(e)

let * =e in
(Ay-unwrap.,, (¢(wrap,, (1)), z)

unwrap,, (e

unwrap.. pack (6) = ¢
unwrap, ., (e) = let z=ein

(unwrap_ (1 (z)), unwrap_ (m2(z)))

In this definition unwrap_ . (e) creates a specialized ver-
sion of the function as in Leroy’s method, but retains the
fully boxed version in the second component of the pair. The
coercion wrap_ _, . (e) can be performed by just extracting
the second component of the pair®.

These operations satisfy the following lemma which
states that they coerce values into their expected type.

1. IfT'Fe:[pliT|, then T F wrap,(e) : [p(T)].
2. IfT'Fe:[p(r)], then T F unwrap_(e) : [p]|7].

Lemma 1

The next step is to define the operation S, (e : 7) which is
used to coerce values of polymorphic type 7 into a more spe-
cialized type p(7). With our representation it can be easily
defined by using unwrap,. without introducing the general-
ization G,(e : 7). This comes from the fact we always build
new versions of a function by specializing its fully boxed ver-
sion, rather than generalizing another specialized version.

ifp(ry=1

otherwise

Sple:1) = e

Sp(e:a) = unwrap,(e)
Sple:int) = e
Sy(e:m —>7'2) = unwrap,(,,) (m(e))
Sp(e:T1 X 1) = let x =e in
(Sp(mi(z) : 1), Sp(m2(x) : 72))
Sy(e: T pack) = e

This operation coerces a value into the proper type as stated
below.

Lemma 2 IfT'Fe: [p](|7]), then T'F S,(e : 7) : |p(T)].

1These new definitions of wrap and unwrap are not compatible with
those used in the informal presentation: there we use Leroy’s defini-
tions.

i i
I'kFeir:mm > 1me~e; Dhex:mi~ey

I'(z) =Vai,...,an.t Dom(p) ={ai,...,an}

TFeies: 2~ (mel)es

TFaz:p(r)~ Sy(z:7)

. . /
Mrx:mmbFe:m~e

TFAz.e:m — 72~ let y= Ar.e’ in (y,Az.wrap,, (y(unwrap,, (2))))

The :m~ey T,z:Clos(ti,T)Fes:m~seh

TFlet x=e; in es : T2 ~ let x = €] in e}
1 2

Dkei:m~ el

L'kes: o~ el

The:m Xm~e

TF (e1,e2): 11 X 72~ (€], eh)

FFe:T~¢€

TFme): i~ mi(e)

T'Fe:7pack~ e

T pack(e) : T pack ~ pack(wrap_(e"))

[F unpack(e) : 7 ~ unwrap_ (unpack(e’))

Fkej:int~ef They:T~seh Thes:T—37~seh

['Fiter(e1, ez, es) : T~ iter(el,eh, mi(eh))

Figure 5: Translation of Expressions

Now we present the translation of expressions as a de-
ductive system with judgments of the form

Fke:rT~e.

The rules of the translation are shown in Figure 5. The
translation is uniquely determined by the typing derivation
of e. Let us explain a few rules:

Variable A variable z is translated to S,(z) which specializes
the representation of z.

Application After translation the specialized version of a
function is obtained by extracting the first component
of its representation.

Abstraction A lambda abstraction is translated to a pair of
lambda abstractions. The fully boxed version is ob-
tained by coercing the specialized version by unwrap,
and wrap_,.

We extend the translation to polytypes and type environ-
ments as |Va.r| = Va.|r| and |['|(z) = |['(z)|. Then the
type correctness of this translation is formulated as the fol-
lowing lemma and proved by induction on the derivation of
Tke:T~ €.

Lemma 3 (Type Correctness) IfI' e : 7~ €', then
IT| ke :|7|.

As an example, let us consider the specialization of
a variable z of polymorphic type Va.aa — « to (int —
int) — (int — int). We do not expand wrap,,,_,;,, and
unwrap;,,,_,.,; for the sake of readability.

S[int—»int/a](z o — a)

unwrap(int%int)—»(int%int) (7T2 (Z))

let z = m2(z) in
(Ay'unwrapint—)int(m(wrapint—)int(y)))a 1‘)

In our representation, application of ep to an expression e;
will be written mi(eo)er. After a few administrative reduc-
tions, let us see what it looks like.

€0

i (eo)er =mi(let x = m2(z) in
(’\y'unwrapint—»int (m(wrapint—)int(y)))a 1‘))61
= (Ay.unwrap,,,; ;¢ (m2(2)(Wrap;,,; ., (y))))er
= UnWrap;,; i, (m2(2) (Wrap; e i, (€1)))

Finally, the two programs in Section 3 are translated as
follows:

let id =wrap',_, (Az.z) in
iter(”: (07 Wrap’in —int ()\$$)),
Ny, y2)-(71 (y2)51, _
UNWrap; ¢ int (71.2 (Zd)(wrapint%int(yQ)))))

iter(na (07 Wrap’int%int(xx'm)x
A1, y2)-(m(y2)y1,
unWrap; ., i, (unpack(pack(wrap;,,; ,in:(y2))))))
where wrap’_ , (e) is a shorthand for let y =

e in (y, Az.wrap,, (y(unwrap,_ (2)))) and AMy1,y2).e
for Ay.e[mi(y)/y1, m2(y)/y2]. We also simplified
mi(wrap', ., (e)) into e. As for Leroy’s transformation, at
runtime these programs successively apply unwrap;,; ,;.:
and wrap;,,;_,;,;- However, this does not raise the original
complexity anymore, as we explained earlier.

5.2 Correctness and Complexity

In this section we prove the main theorem of this paper:
our version of the type-directed unboxing transformation is
correct and does not raise the complexity of programs with
respect to evaluation steps.

Formalizing the fact our translation preserves the com-
plexity of programs with respect to evaluation steps is not
that easy. For instance, there exists no constant C such that
for any closed program e the following holds.

Property 4 If) + e :
@ = el U«Cn 1

int ~ ¢ and O - e |, i, then

This impossibility is related to the fact wrap,(e) and
unwrap_(e) may require a number of evaluation steps pro-
portional to the size of 7. This becomes clear if you
consider the evaluation of wrap, (e) where 70 = int and
Tn+l = Tn X Tn.

Notice also that, if we let the ratio C' depend on the
closed program to be transformed, the above property is
trivial: just choose C such that Cn is larger than the number
of steps needed to evaluate e'!

Thus, while the ratio C needs to be program dependent
to avoid the above impossibility, we will consider a larger

class of programs, i.e. programs with a single free variable
of type int, rather than only closed ones. Then we can
formalize our main theorem.

Theorem 5 Let e be a program such that x : int - e : int ~
e'. Then there erists a constant C' such that for any integer

i, if [i/z]F e ln i then [i/z] ke Jon i

This means that the time complexity of e is preserved up to
C, independently of the value of x.

Several studies related to program transformation have
used logical relations to build correctness proofs [14, 8, 6, 11].
For our main theorem we extend the standard logical rela-
tion framework so that the relation between evaluation steps
is taken into account. Our relations depend on a constant C
which indicates the maximum ratio between the number of
evaluation steps in the source program and in the translated
program. We define relations between values v: 7 ~c v : 71’
indexed by closed source and target types 7 and 7. The
definition of the relations v : 7 ~¢ v : 7' is shown in Fig-
ure 6 where we write F vo’ |, v" if v is a closure (v, z,e))
and y[v'/z] ke Lno1 V.

The key point in this definition is that in (%) the eval-
uation of the application v} to v’ is required to terminate
not in less than 2C'n — 1 steps, but in less than 2Cn — C
steps. Thanks to this extra C'—1, one can obtain an unboxed
version of v' without violating the condition on evaluation
steps. The above relations are well-defined by induction on
the structure of indexing types.

Our strategy to prove the main theorem is to find for
each program a constant C such that the program and its
translation satisfy the relation ~¢. We determine C' by
inspecting the maximal size of the types appearing in the
typing derivation of the program. The size of types is defined
as follows:

size(a) = 1
size(int) = 1
size(t pack) = size(r)+1
size(T1 X T2) = size(T1) + size(m2) + 1
size(Ti = 1) = size(r1) + size(r2) +1

The following lemmas give an upper bound for the cost of
three basic operations: boxing, unboxing and specialization.
We use a constant natural number R = 6, determined by
inspecting the evaluation of wrap_(e), unwrap_(e), and S, (e :

7).

Lemma 6 Let M be a constant natural number and C be
a natural number such that C > RM. Then the following
hold for any T such that size(t) < M.

1. Ify' F e L v and v : p(T) mc v : [p]|T], then v'
wrap,(€') Vmir(size(r)) V' and v : p(t) mo v : [p(7)].

2. If ¥ F e lm v and v : p(7) =¢ v : [p(7)], then
¥ b unwrap_(€') Umir(size) v and v : p(T) =c v :
ollr|-

Lemma 7 Let M be a constant natural number and C be a
natural number such that C > RM. For any T and p such
that size(p(1)) < M, if ¥ F e Lm v and v : §(p(7)) =c
v [B]([pl(I7])), then 7' F Sp(€' : 7) bt rsize(o(ry)y v and
v :0(p(r)) mc V" [0](lp(T)))-

The proof of these lemmas appears in Appendix.

The next lemma tells that we can choose a constant C
such that the evaluation of a source program and its trans-
lation are related by C. For v and ¥’ two environments with
same domain, v : I' ®¢ 4’ : [V means that they are point-
wise related at types corresponding to the signatures I' and
r.

Lemma 8 Let'Fe: 7~ e'. Then there exists a constant
C such that if v : §(T) =c¢ ~' : [0](IT|) and v+ € |n v, then
Y e Jocn v and v: 8(T) me v [0](|7])-

This lemma, is proved by induction on the derivation of I' -
e : 7 ~ ¢ by using Lemma 6 and 7. An outline of the
proof appears in Appendix. The main theorem is obtained
by restricting this lemma to I' = z : ¢nt and 7 = int.

6 Related Work

The formal study of unboxing for functional programming
languages started at the beginning of the 1990’s. Peyton
Jones and Launchbury [16] extended a non-strict functional
language and its type system to handle unboxed values. By
making all boxing and unboxing explicit in an intermediate
language, they are able to express optimizations in terms of
program transformation. However their transformations are
not type-directed, and their unboxing is only local: thanks
to a worker-wrapper model of functions they are able to han-
dle unboxing in up to recursive function calls —the worker
calls itself recursively with unboxed values while the wrap-
per does the necessary unboxing and boxing—, but they
cannot handle cross-module optimizations for instance.

By using a type-directed transformation, Leroy avoids
such limitations [8]. We presented his transformation thor-
oughly in the body of this paper.

From then this area has been stimulating several at-
tempts to effectively use unboxed representations in the
implementation of polymorphic languages. Basically two
approaches have been proposed so far: the coercion based
approach following Leroy, and another approach based on
runtime type passing.

Thiemann showed that by making some “mild” as-
sumption on the calling convention of the underlying lan-
guage, and using a yet more refined type system, not only
monomorphic functions but also some polymorphic func-
tions can get rid of boxing [22]. Henglein and Jgrgensen
formalized optimality of boxing and unboxing [7]. However,
their optimality criterion is based on a rewriting of programs
which eliminates coercions and does not capture the run-
time behavior of boxing and unboxing. Shao proposed to
mix with the second approach: unboxing based on both co-
ercion and runtime type passing [19]. His method can use
partially unboxed representation even for incoercible data
types such as reference and lists.

The main topic of these studies has been to reduce boxing
and unboxing operations and to extend the use of unboxed
representations. However, none of them was aware that un-
boxing transformation may raise a program’s complexity.

The coercion based approach is still limited by the barrier
of polymorphism: once we pass a function to a higher-order
polymorphic functional, there is no way we can use its un-
boxed version. Runtime type passing can handle this case.
Ohori and Takamizawa [15] showed that it is possible to pass
unboxed values to polymorphic functions by parameterizing
them on the size of their arguments. Harper and Morrisett

1t Xo1ant
i:int o i : boxint
(vi,v2) : 11 X T2 =¢ (vi,v5) : T X 75
{v) : T pack =c (V")) : 7' pack

viTL ST RV T — T

i 1" I I n 1"
viTi o nRe (V)i o X o7

v:Va;. 7 ~c v Va1

ifo, 1 =ov) 7 and va : T "o VSt Th
ifv:rmcv 7

for all v1 : 71 ~c v} : 11, if Fovr | v2 (%)
then F v'v] Jacn—c vh and va : T2 "o vy @ TS

for all v1 : 71 ¢ vi : 11, if Fovr |y v2

then F v'v] J2cn—1 vh and vz : 7o ~c vh 1 TS
vim = nov T =Ty

for all 7, v : [1;/ai]T = v [[1i]/]’

Figure 6: Logical Relations

presented a general framework to utilize runtime type in-
formation by dynamically passing it [6]. The TIL ML com-
piler [21, 12] is developed based on this framework and uses
unboxed representations. Runtime type passing does not
seem to change the complexity of programs. However, there
are difficult implementation issues in this approach [12].

Recently, the complexity problem we pointed here, to-
gether with the difficulties inherent to other methods, have
stimulated stronger interest for untyped flow analysis based
optimizations. In his ML compiler, Leroy abandons type-
directed unboxing for a set of local untyped optimizations
combined with a simple flow analysis, and reports encour-
aging results [9]. Goubault [4] goes further by refining the
worker-wrapper model, and suggesting to inline the wrap-
per, cut into pre-processing and post-processing parts. He
can then eliminate most of the boxing on the basis of a
control-flow analysis.

While there was no concern about complexity in the un-
boxing optimization area, there have been several studies
on how to formalize complexity in functional programming
languages. Santos [18] enriches natural semantics with a
notion of cost in a way very similar to ours, and studies
time-complexity properties of several transformations in a
lazy functional programming language. However, the trans-
formations he studied are local and change only the con-
stant amount of costs. Thus he did not have to consider
asymptotic complexity of programs as we do. Roe [17], and
Greiner and Blelloch [5, 2] defined profiling operational se-
mantics for parallel functional languages. The later have
used it to prove that the translation of the parallel specu-
lative A-calculus and NESL into abstract machines preserve
asymptotic complexity of programs.

7 Future Work

This work is still ongoing, and there are problems left to
solve, both theoretical and practical.

We have proved that our unboxing transformation pre-
serves the complexity of programs with respect to evaluation
steps, that is safety for time. The next natural step is to
prove the same safety property for space. We believe our
approach also preserves the space complexity of programs,
in the sense of amount of live heap needed. However formal-
izing that property would need a more refined operational
semantics such as proposed in [13], and the proof ought to
be more involved.

Our unboxing transformation still shares another unde-

sirable property with other type-directed unboxing transfor-
mations: it may convert some tail calls into non-tail calls,
which can also change the space complexity of programs (in
a model including tail-call optimization). We are working
at solving this problem.

Even if we can solve all these questions, our transforma-
tion is useless if it does not indeed increase the performance
of programs. As we stated in the introduction, on purely
monomorphic programs (i.e. without specialization at all)
it is by definition less efficient than Leroy’s, since we are
adding projections at every application step. Even for poly-
morphic ones, our coercions are generally more complex.

A first remark is that it is not really as bad as it seems.
For instance, our specialized representation for function
types is a pair. Since it is independent from the generic rep-
resentation, nothing opposes unboxing this pair, and getting
rid of the extra indirection needed for boxed pairs. It means
that we loose almost nothing on monomorphic programs,
and gain when the fully boxed version is needed, since we
already have it for free. To get into more details we need to
actually implement this transformation.

Another remark is that we shall be able to extend this
proof to further refinements of the unboxing transformation,
this time oriented towards efficiency. One of the problems
we have is that we specialize a function always from its fully
boxed form. However, this can be modified without violat-
ing safety so that a function is specialized from its current
specialized form. To achieve this scheme the only thing to
modify is the definition of specialization.

Sple: 11 = 1) = (Ax.S,(m1(e)(Go(z = 1)) = T2), m2(€))
Gple: 1 — 12) = (Az.unwrap_ (m2(e)(wrap,, (2))), m2(e))

The other cases are taken from Leroy’s definitions. In this
scheme, specialization increases the size of functions. How-
ever, this expansion does not go on forever, since general-
ization restarts from the generic representation. For this
reason we believe this method still preserves the complexity
of programs. This is yet to be proved.

Acknowledgements

This work is partially supported by Grant-in-Aid for En-
couragement of Young Scientists of Japan No. 09780271.
We would like to thank Masahito Hasegawa, Susumu
Nishimura, Atsushi Ohori, and the anonymous reviewers for
their many helpful comments and suggestions.

References

[1] A. W. Appel. Compiling with Continuation. Cambridge
University Press, 1992.

[2] G. E. Blelloch and J. Greiner. A provably time and
space efficient implementation of NESL. In Proc.
ACM SIGPLAN International Conference on Func-
tional Programming, pages 213-225, 1996.

[3] D. Clément, J. Despeyroux, T. Despeyroux, and
G. Kahn. A simple applicative language: Mini-ML.
In Proc. ACM Conference on Lisp and Functional Pro-
gramming, pages 13 — 27, 1986.

[4] J. Goubault. Generalized unboxing, congruences and
partial inlining. In Proc. Static Analysis Symposium,
pages 147-161, 1994.

[5] J. Greiner and G. E. Blelloch. A provably time-efficient
parallel implementation of full speculation. In Proc.
ACM Symposium on Principles of Programming Lan-
guages, pages 309 — 321, 1996.

[6] R. Harper and G. Morrisett. Compiling polymorphism
using intensional type analysis. In Proc. ACM Sympo-
stum on Principles of Programming Languages, pages
130-141, 1995.

[17] P. Roe. Parallel Programming using Functional Lan-

guages. PhD thesis, Department of Computing Science,
University of Glasgow, 1991.

[18] A. L. Santos. Compilation by Transformation in Non-

strict Functional Languages. PhD thesis, Department
of Computing Science, University of Glasgow, 1995.

[19] Z. Shao. Flexible representation analysis. In Proc.

ACM SIGPLAN International Conference on Func-
tional Programming, pages 85 — 98, 1997.

[20] Z. Shao and A. W. Appel. A type-based compiler

for Standard ML. In Proc. ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, pages 116 — 129, 1995.

[21] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,

R. Harper, and P. Lee. TIL: A type-directed optimiz-
ing compiler for ML. In Proc. ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, pages 181-192, 1996.

[22] P. Thiemann. Polymorphic typing and unboxed val-

ues revisited. In Proc. ACM Symposium on Functional
Programming Languages and Computer Architecture,
pages 24 — 35, 1995.

[7] F. Henglein and J. Jorgensen. Formally optimal box- A Proofs
ing. In Proc. ACM Symposium on Principles of Pro-
gramming Languages, pages 213 — 226, 1994. A.1 Proof of Lemma 6

Proof. By induction on the structure of types. We will show

[8] X. Leroy. Unboxed objects and polymorphic typing. In
some important cases. In this proof we write ~ for ~c.

Proc. ACM Symposium on Principles of Programming

Languages, pages 177 — 188, 1992. Case: T is 71 — 7.

[9] X. Leroy. The effectiveness of type-based unboxing. In
Proc. International Workshop on Types in Compilation,
pages 1-8, 1997.

Subcase: wrap, . (¢')is m2(e'). By definition of =, v can
be written as (vi,v}) and v : p(11 = T2) = vy : [p(r1 —
72)]. This case is proved since 7' F m2(€’) m+1 V5.

[10] R. Milner. A theory of type polymorphism in pro-

gramming. Journal of Computer and System Sciences,
17:348-375, 1978.

[11] Y. Minamide, G. Morrisett, and R. Harper. Typed clo-
sure conversion. In Proc. ACM Symposium on Princi-
ples of Programming Languages, pages 271 — 283, 1996.

Subcase: unwrap, . (€') is
let z =€ in (Ay.unwrap,, (z(wrap, (y))),z).
By definition of the operational semantics,

Y[’ /z] - (Ay.unwrap,, (z(wrap_, (y))), z)
s (('[v'/2], y, unwrap,, (z(wrap., (1)), v')

[12] G. Morrisett. Compiling with Types. PhD thesis, School

" ! !
of Computer Science Carnegie Mellon University, 1995. Let v be (y'[v'/z], y, unwrap,, (z(wrap,, (y))))). Then

7' Flet z =¢' in (Ay.unwrap, (z(wrap,, (v))),z)

[13] G. Morrisett, M. Felleisen, and R. Harper. Abstract
dmtatr (v, 0)

models of memory management. In Proc. ACM Sympo-
stum on Functional Programming Languages and Com-

puter Architecture, pages 66-77, 1995. where 3 +1 < R(size(T1 — 12)).

. ~ (oI oY L
[14] A. Ohori. A polymorphic record calculus and its compi- Now we have to prove that v : p(r = m) = (v",0') :

lation. ACM Transaction on Programming Languages
and Systems, 17(6):844-895, 1995.

[15] A. Ohori and T. Takamizawa. An unboxed operational
semantics for ML polymorphism. Journal of Lisp and
Symbolic Computation, 10(1):61 — 91, 1997.

[16] S. L. Peyton Jones and J. Launchbury. Unboxed values
as first class citizens in a non-strict functional language.
In Proc. ACM Symposium on Functional Programming
Languages and Computer Architecture, pages 636 — 666,
1991.

[p]|T1 = 72|. By the hypothesis of this lemma, v : p(11 —
72) & v’ : [p][r1 = 72]. Thus the only thing we have to
prove is that for all vy : p(71) = v} : [p]|1], if F vv1 Ly vo
then F v v} Jocn—1 v5 and vs : p(12) = vy : [p]|r2|. Now
we will prove this claim.
By induction hypothesis,

[v1/z] - wrap,, (2) $14R(size(rr)) VT

and v1 : p(11) = v! : [p(m1)].

By v:p(ni =) =o' :[p(ri =)] and v1 : p(r1) =~
vi : [p(11)] and F vv1 n v2, we obtain F v'vY J2cn—c vh
and vs : p(12) = vh : [p(72)]. Then
Y[yllvr /2] F y(wrap,, (2)) $14+(4Rsize(r)) +20m—C V2
Then by induction hypothesis,
[0 vk /2] - unwra, (y(wrap,, ()
V20n—CHR(size(r1))+2)+R(size(rs)) V2
and
"
v2 1 p(T2) R V2 1 [p]| T2 (1)
By the operational semantics,

- ('), 2 umwrap. (y(wrap., (2)))oh
‘U’ZCTL7C’+R(S7JZE(7'1 V+size(r2))+3 U2

Knowing that R(size(r1) + size(m2)) +3 — C < RM —
R+3-C< -1,

=y /y'], 2, unwrap,, (y(wrap,, (2))))1 dacn—1 vy
(2)

(1) and (2) complete the proof of this case.
Case: 718 71 X To.

Subcase: wrap,, .., (') is
let z =¢' in (wrap, (mi(z)), wrap,, (m2(z))).

By definition of =, v and v’ can be written as (v1,v2)

and (v},v5) such that vy : p(m1) =~ v{ : [p]|ri| and
vt pm) = v : ol Then '[(uhub)/e] F
mi(z) {2 vi. By induction hypothesis, v'[(v],v5)/z]
wrap, (71(z)) UotRr(size(r)) v1 and v : p(m) =

)
v : [p(m1)]. In the same way, 7'[(vi,v5)/z] +
wrap_, (m2(2)) Vot r(size(rs)) vy and v2 : p(m2) X vy :
[p(72)]- Then

[(0h,)/ - (wrap,, (1 (2)). wrap., (7s()))
‘U‘5+R(size(7—1)+size(1—2)) (Ul)y U2)
and (vi,v2) : p(11 X 72) = (v],v5) : [p(11 X 72)]. Finally,
7' Flet x =e' in (wrap, (mi(x)),wrap,, (72(z)))
U’m+5+R(size(7'1)+size(7'2))+1 (Ullla U3)

where m+5+R(size(r1)+size(r2))+1 < m+R(size(r1)+
size(r2) + 1) = m + R(size(m1 X 72)). Here we used the
fact R = 6.

The same proof works for unwrap_ ., (e').

O

A.2 Proof of Lemma 7

Proof. By induction on the structure of 7. We will show
some important cases. In this prove we write ~ for ~¢.

Case: p(t) = 7. This case is clear since S,(e' : 7) is €'

Case: 7 is a and S,(e’ : a) is unwrap,,,,(e’).

By [plla| = [p(e)] and Lemma 6,
7" Funwrap, o (€') YmtRr(size(pia)) V"

and v : 3(p(a) = v : [8)(|p(a)]).

Case: 7 is m — 1 and S,(¢/ : 71 — m) is
unwrap, .. .y (m2(e")).
By definition of &, v' F m2(e') Y(m+1) v and v : 8(p(r1 —
7)) & v" 1 [0][pllr1 — T2]

Bg’t [0]lpllm — 7] = [0]lp(1 —)] and Lemma 6, we

v:d(p(r =) = 0" [0](lp(r1 = 7)) 3)

Moreover, unwrap,(,, ., (m2(e’)) is actually the following
expression.

e =1let = ma(e') in (Ay.unwrap, ., (z(wrap,.,,(¥))),z)

Then it is clear that 4" F € Y(mi1)+3+1 v where (m +
1)+3+1 < m+ R(size(p(r1 — 72))). This statement and
(3) complete the proof of this case.

O

A.3 Proof of Lemma 8

Proof. There is a natural number M such that the size of
any type appearing the derivation I' - e : 7 ~» ¢’ is less than
M. Let C be a natural number such that C' > RM.

Now C is fixed, and we will prove the property by induc-
tion for every judgment in the derivation of ' e: 7~ ¢'.
We write ~ for ~¢.

Case: I' F z : p(7) ~ S,(x). We assume that Dom(d) N
{a} = 0 by variable convention and Dom(p) = {@}. By
the hypothesison I, v : Va.d (1) ~ v’ : Va.[6](|7]). Let p’ be
d o p. Then by the definition, v : p'(d(7)) = v" : [p'][8](|7]).
That is v : d(p(7)) =~ v" : [8][p](J7]). On the other hand
ykzlivandy' Fx |1 v'. Then by Lemma 7, v' - S,(z :
7) Y14 Risize(p(ry) V" such that v : (p(1)) = v" : [0](|p(T)])
where 1 + R(size(p(r))) <1+ RM < 2C.

Case: T F eres : T2 ~ mi(e})eh is obtained from T | ey :
m—o>m~eiandD ey ~eh LetybFer v
and v F e2 lm v2. Then by induction hypothesis for e,
v E el Yeor (v1,v)) and v1 : §(r1 —) = (vi,0]) :
[(5]((|T1| — |T2|) X [7'1 — 7'2]). Then ’y, = 71'1(6,1) U-201+1 1}’1.

By induction hypothesis for e2, 7' F e U2cm vsy and vs :
8(r1) = vy 2 [0](Im)

Let + viv2 |n v. Then by the definition of =, F
v1vy Yocn—1 v and v : §(12) =o' : [6](|72]).

This means that v F eie2 litmin v and o F
mi(el)es Yacitiraomiacn—1 v where 2C1 + 1 + 2Cm +
2Cn —1=2C(+m+n).

Case: I' F Xxe @ 11 — T ~ lety =
Az.e’ in (y, Az.wrap_, (y(unwrap_ (2)))) is obtained from
T : m F e : m ~ €. Let e be let y =
Az.e' in (y,A\z.wrap_, (y(unwrap, (2)))).

v F Aze L1 {v,z,e)) and A F €' s
sz e, I @, €D /), 2, wrap,, (y(unwrap . (2)))))
where 5 < 2C.

Take v : §(r1) ~ v : [8](|Jm1|). Let b {v,z,ehv |n va.
That means y[v/z] F e Jn—1 v2. By induction hypothesis,
Y[/x] k€ Uacn_1) v5 and vy : §(2) & v5 : [8]|72]. Then
F (v z,e'W Yocm-1)+1 v2 where 2C(n—1)+1 < 2Cn—1.

Take v : §(m1) =~ v' : [0(m1)] and let y[v/z] = {(v,v,e)v |n
v3. That means

Y[v/z] F e bno1 vs (4)
Now we have to consider the evaluation of
1€ 2, €D /yl, 2, wrap, (y(unwrap, (2))))v". Let

YY" be (Y ,z,e')/yl[v'/2]. Then we will consider
the evaluation of wrap,, (y(unwrap, (2))) under the
environment "

By Lemma 6, " F unwrap_ (2) Y14 r(size(ry)) v and v :
3(m) = 0" [8](J))-

By induction hypothesis for y[v/z] : d(T,z : 1) =
Y'[" /2] [0](IT], 2 « |1]) and (4),

Y[[x] F € Yoacin—1) V3.

Then 4" F y(unwrap, (2)) $141+R(size(r1))+2C(n—1)+1 U3
and vs : 6(m2) = vs : [6](|r2|)-
By Lemma 6,

7" - wrap,, (y(unwrap,, (2))) ,

V(R(size(r1))42C(n—1)+8)+R(size(r)) V3

and v3 : 6(72) ~ v§ : [§(72)]. This means
!

- (e €D 2 wrap, (y(unwrap,, ()
Y (R(size(r1)+20(n—1)+3)+R(size(r2))+1 U3

where (R(size(r1)) + 2C(n — 1) + 3) + R(stze(r2)) +
R(size(t1 = 12))+2C(n—1)+4— R < RM+2C(n—
2Cn-C

1=
1)<

Case: T'F let £ = e; in ex : 7 ~» let © = e} in e} is
derived from ' e; : 71 ~ ¢} and T,z : Clos(m1,T) e :
T~ eh.

Let {a;} be FTV(m)\ FTV(T) and ¢’ be a ground sub-
stitution on «;.

By the operational semantics v F e:1 J; vi. Then by in-
duction hypothesis v’ F e} lact v} and vy : §'(6(11)) ~
vy @ [0']([6](J72])). By definition vy : Vau.d(m1) = vy :
Vai.[0](|T1]). By the operational semantics «y[vi/z] F
ez |m v. Then by induction hypothesis, for v[vi/z]

p(T,z : Ya;.m) = v'[vi/z] : [p](T|,z : |Va;.11]) and
v F ex lm v, we obtain ¥'[vi/z] F eb Y2cm v’ and
v : 8(r2) =~ v : [6](Jr2]). This means that v F e Jiymi1 v
and 7' F €' locitrocmt+1 v and v 1 §(m2) = V' @ [0](|72])-
This case is proved since 2C1 +2Cm +1 < 2C(1+m+1).

Case: T' + pack(e) : 7 pack ~ pack(wrap_(e')) is de-
rived from T F e : 7 ~ €. Let ¥ F e ln v. Then
v F pack(e) {n+1 {v)). By induction hypothesis, v
e’ l2cn v such that v : §(r) = v : [§]|7]

By Lemma 67 7’ F wrap,(e') Jr2(7n+R(size(r)) v
such that v : &6(r) = o : [§(r)] Then 4 F
pack(wrap, (') locntr@sizeny41 (V") where 2Cn +
R(size(r))+1 < 2Cn+RM+1 < 2Cn+C+1 < 2C(n+1).

O

